| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- from urllib.parse import quote
- from time import time
- from datetime import datetime
- from queue import Queue, Empty
- from threading import Thread
- from re import findall
- from curl_cffi.requests import post
- class PhindResponse:
-
- class Completion:
-
- class Choices:
- def __init__(self, choice: dict) -> None:
- self.text = choice['text']
- self.content = self.text.encode()
- self.index = choice['index']
- self.logprobs = choice['logprobs']
- self.finish_reason = choice['finish_reason']
-
- def __repr__(self) -> str:
- return f'''<__main__.APIResponse.Completion.Choices(\n text = {self.text.encode()},\n index = {self.index},\n logprobs = {self.logprobs},\n finish_reason = {self.finish_reason})object at 0x1337>'''
- def __init__(self, choices: dict) -> None:
- self.choices = [self.Choices(choice) for choice in choices]
- class Usage:
- def __init__(self, usage_dict: dict) -> None:
- self.prompt_tokens = usage_dict['prompt_tokens']
- self.completion_tokens = usage_dict['completion_tokens']
- self.total_tokens = usage_dict['total_tokens']
- def __repr__(self):
- return f'''<__main__.APIResponse.Usage(\n prompt_tokens = {self.prompt_tokens},\n completion_tokens = {self.completion_tokens},\n total_tokens = {self.total_tokens})object at 0x1337>'''
-
- def __init__(self, response_dict: dict) -> None:
-
- self.response_dict = response_dict
- self.id = response_dict['id']
- self.object = response_dict['object']
- self.created = response_dict['created']
- self.model = response_dict['model']
- self.completion = self.Completion(response_dict['choices'])
- self.usage = self.Usage(response_dict['usage'])
- def json(self) -> dict:
- return self.response_dict
- class Search:
- def create(prompt: str, actualSearch: bool = True, language: str = 'en') -> dict: # None = no search
- if not actualSearch:
- return {
- '_type': 'SearchResponse',
- 'queryContext': {
- 'originalQuery': prompt
- },
- 'webPages': {
- 'webSearchUrl': f'https://www.bing.com/search?q={quote(prompt)}',
- 'totalEstimatedMatches': 0,
- 'value': []
- },
- 'rankingResponse': {
- 'mainline': {
- 'items': []
- }
- }
- }
-
- headers = {
- 'authority' : 'www.phind.com',
- 'origin' : 'https://www.phind.com',
- 'referer' : 'https://www.phind.com/search',
- 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36',
- }
-
- return post('https://www.phind.com/api/bing/search', headers = headers, json = {
- 'q': prompt,
- 'userRankList': {},
- 'browserLanguage': language}).json()['rawBingResults']
- class Completion:
- def create(
- model = 'gpt-4',
- prompt: str = '',
- results: dict = None,
- creative: bool = False,
- detailed: bool = False,
- codeContext: str = '',
- language: str = 'en') -> PhindResponse:
-
- if results is None:
- results = Search.create(prompt, actualSearch = True)
-
- if len(codeContext) > 2999:
- raise ValueError('codeContext must be less than 3000 characters')
-
- models = {
- 'gpt-4' : 'expert',
- 'gpt-3.5-turbo' : 'intermediate',
- 'gpt-3.5': 'intermediate',
- }
-
- json_data = {
- 'question' : prompt,
- 'bingResults' : results, #response.json()['rawBingResults'],
- 'codeContext' : codeContext,
- 'options': {
- 'skill' : models[model],
- 'date' : datetime.now().strftime("%d/%m/%Y"),
- 'language': language,
- 'detailed': detailed,
- 'creative': creative
- }
- }
-
- headers = {
- 'authority' : 'www.phind.com',
- 'origin' : 'https://www.phind.com',
- 'referer' : f'https://www.phind.com/search?q={quote(prompt)}&c=&source=searchbox&init=true',
- 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36',
- }
-
- completion = ''
- response = post('https://www.phind.com/api/infer/answer', headers = headers, json = json_data, timeout=99999)
- for line in response.text.split('\r\n\r\n'):
- completion += (line.replace('data: ', ''))
-
- return PhindResponse({
- 'id' : f'cmpl-1337-{int(time())}',
- 'object' : 'text_completion',
- 'created': int(time()),
- 'model' : models[model],
- 'choices': [{
- 'text' : completion,
- 'index' : 0,
- 'logprobs' : None,
- 'finish_reason' : 'stop'
- }],
- 'usage': {
- 'prompt_tokens' : len(prompt),
- 'completion_tokens' : len(completion),
- 'total_tokens' : len(prompt) + len(completion)
- }
- })
-
- class StreamingCompletion:
- message_queue = Queue()
- stream_completed = False
-
- def request(model, prompt, results, creative, detailed, codeContext, language) -> None:
-
- models = {
- 'gpt-4' : 'expert',
- 'gpt-3.5-turbo' : 'intermediate',
- 'gpt-3.5': 'intermediate',
- }
- json_data = {
- 'question' : prompt,
- 'bingResults' : results,
- 'codeContext' : codeContext,
- 'options': {
- 'skill' : models[model],
- 'date' : datetime.now().strftime("%d/%m/%Y"),
- 'language': language,
- 'detailed': detailed,
- 'creative': creative
- }
- }
-
- stream_req = post('https://www.phind.com/api/infer/answer', json=json_data, timeout=99999,
- content_callback = StreamingCompletion.handle_stream_response,
- headers = {
- 'authority' : 'www.phind.com',
- 'origin' : 'https://www.phind.com',
- 'referer' : f'https://www.phind.com/search?q={quote(prompt)}&c=&source=searchbox&init=true',
- 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36',
- })
- StreamingCompletion.stream_completed = True
- @staticmethod
- def create(
- model : str = 'gpt-4',
- prompt : str = '',
- results : dict = None,
- creative : bool = False,
- detailed : bool = False,
- codeContext : str = '',
- language : str = 'en'):
-
- if results is None:
- results = Search.create(prompt, actualSearch = True)
-
- if len(codeContext) > 2999:
- raise ValueError('codeContext must be less than 3000 characters')
-
- Thread(target = StreamingCompletion.request, args = [
- model, prompt, results, creative, detailed, codeContext, language]).start()
-
- while StreamingCompletion.stream_completed != True or not StreamingCompletion.message_queue.empty():
- try:
- chunk = StreamingCompletion.message_queue.get(timeout=0)
- if chunk == b'data: \r\ndata: \r\ndata: \r\n\r\n':
- chunk = b'data: \n\n\r\n\r\n'
-
- chunk = chunk.decode()
-
- chunk = chunk.replace('data: \r\n\r\ndata: ', 'data: \n')
- chunk = chunk.replace('\r\ndata: \r\ndata: \r\n\r\n', '\n\n\r\n\r\n')
- chunk = chunk.replace('data: ', '').replace('\r\n\r\n', '')
-
- yield PhindResponse({
- 'id' : f'cmpl-1337-{int(time())}',
- 'object' : 'text_completion',
- 'created': int(time()),
- 'model' : model,
- 'choices': [{
- 'text' : chunk,
- 'index' : 0,
- 'logprobs' : None,
- 'finish_reason' : 'stop'
- }],
- 'usage': {
- 'prompt_tokens' : len(prompt),
- 'completion_tokens' : len(chunk),
- 'total_tokens' : len(prompt) + len(chunk)
- }
- })
- except Empty:
- pass
- @staticmethod
- def handle_stream_response(response):
- StreamingCompletion.message_queue.put(response)
|