Explorar o código

Examples: Add webgpu_compute_particles_fluid (#31148)

* begin work on webgpu_compute_particles_fluid

* add mouse interaction

* cleanup, add rounded box constraints, add ao, improve stability

* removing `.setPBO()`

* Update webgpu_compute_particles_fluid.html

Fix formatting.

---------
Niklas Niehus hai 7 meses
pai
achega
f714027c0c

+ 1 - 0
examples/files.json

@@ -312,6 +312,7 @@
 		"webgpu_compute_cloth",
 		"webgpu_compute_geometry",
 		"webgpu_compute_particles",
+		"webgpu_compute_particles_fluid",
 		"webgpu_compute_particles_rain",
 		"webgpu_compute_particles_snow",
 		"webgpu_compute_points",

BIN=BIN
examples/screenshots/webgpu_compute_particles_fluid.jpg


+ 597 - 0
examples/webgpu_compute_particles_fluid.html

@@ -0,0 +1,597 @@
+<!DOCTYPE html>
+<html lang="en">
+	<head>
+		<title>three.js webgpu - compute fluid particles</title>
+		<meta charset="utf-8">
+		<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
+		<link type="text/css" rel="stylesheet" href="main.css">
+	</head>
+	<body>
+
+		<div id="info">
+			<a href="https://threejs.org" target="_blank" rel="noopener">three.js</a> webgpu - fluid particles<br />
+			MLS-MPM particle simulation running in compute shaders
+		</div>
+
+		<script type="importmap">
+			{
+				"imports": {
+					"three": "../build/three.webgpu.js",
+					"three/webgpu": "../build/three.webgpu.js",
+					"three/tsl": "../build/three.tsl.js",
+					"three/addons/": "./jsm/"
+				}
+			}
+		</script>
+
+		<script type="module">
+
+			import * as THREE from 'three';
+
+			import { Fn, If, Return, instancedArray, instanceIndex, uniform, attribute, uint, float, clamp, struct, atomicStore, int, ivec3, array, vec3, atomicAdd, Loop, atomicLoad, max, pow, mat3, vec4, cross, step, pass, mrt, output, normalView } from 'three/tsl';
+
+			import { ao } from 'three/addons/tsl/display/GTAONode.js';
+			import { GUI } from 'three/addons/libs/lil-gui.module.min.js';
+			import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
+			import { RGBELoader } from 'three/addons/loaders/RGBELoader.js';
+			import * as BufferGeometryUtils from 'three/addons/utils/BufferGeometryUtils.js';
+			import WebGPU from 'three/addons/capabilities/WebGPU.js';
+
+			let renderer, scene, camera, controls;
+
+			const clock = new THREE.Clock();
+
+			const maxParticles = 8192 * 16;
+			const gridSize1d = 64;
+			const gridSize = new THREE.Vector3( gridSize1d, gridSize1d, gridSize1d );
+			const fixedPointMultiplier = 1e7;
+
+			let particleCountUniform, stiffnessUniform, restDensityUniform, dynamicViscosityUniform, dtUniform, gravityUniform, gridSizeUniform;
+			let particleBuffer, cellBuffer, cellBufferFloat;
+			let clearGridKernel, p2g1Kernel, p2g2Kernel, updateGridKernel, g2pKernel;
+			let particleMesh;
+			const mouseCoord = new THREE.Vector3();
+			const prevMouseCoord = new THREE.Vector3();
+			let mouseRayOriginUniform, mouseRayDirectionUniform, mouseForceUniform;
+			let postProcessing, aoPass, blendPassAO, scenePassColor;
+
+			if ( WebGPU.isAvailable() === false ) {
+
+				document.body.appendChild( WebGPU.getErrorMessage() );
+				throw new Error( 'No WebGPU support' );
+
+			}
+
+			const gui = new GUI();
+
+			const params = {
+				particleCount: 8192 * 4,
+				ambientOcclusion: true,
+			};
+
+			init();
+
+			async function init() {
+
+				renderer = new THREE.WebGPURenderer( { antialias: true } );
+				renderer.setPixelRatio( window.devicePixelRatio );
+				renderer.setSize( window.innerWidth, window.innerHeight );
+				renderer.toneMapping = THREE.ACESFilmicToneMapping;
+				renderer.toneMappingExposure = 1.35;
+				document.body.appendChild( renderer.domElement );
+
+				scene = new THREE.Scene();
+
+				camera = new THREE.PerspectiveCamera( 40, window.innerWidth / window.innerHeight, 0.01, 10 );
+				camera.position.set( - 1.3, 1.3, - 1.3 );
+
+				controls = new OrbitControls( camera, renderer.domElement );
+
+				controls.minDistance = 1;
+				controls.maxDistance = 3;
+				controls.maxPolarAngle = Math.PI * 0.35;
+				controls.touches = { TWO: THREE.TOUCH.DOLLY_ROTATE };
+
+				const rgbeLoader = new RGBELoader().setPath( 'textures/equirectangular/' );
+
+				const hdrTexture = await rgbeLoader.loadAsync( 'royal_esplanade_1k.hdr' );
+				hdrTexture.mapping = THREE.EquirectangularReflectionMapping;
+				scene.background = hdrTexture;
+				scene.backgroundBlurriness = 0.5;
+				scene.environment = hdrTexture;
+
+				setupParticles();
+
+				gui.add( params, 'particleCount', 4096, maxParticles, 4096 ).onChange( value => {
+
+					p2g1Kernel.count = value;
+					p2g2Kernel.count = value;
+					g2pKernel.count = value;
+					p2g1Kernel.updateDispatchCount();
+					p2g2Kernel.updateDispatchCount();
+					g2pKernel.updateDispatchCount();
+					particleMesh.count = value;
+					particleCountUniform.value = value;
+
+				} );
+
+				gui.add( params, 'ambientOcclusion' );
+
+				// setting up post processing for ambient occlusion
+				postProcessing = new THREE.PostProcessing( renderer );
+				const scenePass = pass( scene, camera );
+				scenePass.setMRT( mrt( {
+					output: output,
+					normal: normalView
+				} ) );
+				scenePassColor = scenePass.getTextureNode( 'output' );
+				const scenePassNormal = scenePass.getTextureNode( 'normal' );
+				const scenePassDepth = scenePass.getTextureNode( 'depth' );
+				aoPass = ao( scenePassDepth, scenePassNormal, camera );
+				aoPass.resolutionScale = 0.5;
+				blendPassAO = aoPass.getTextureNode().mul( scenePassColor );
+				postProcessing.outputNode = blendPassAO;
+
+				window.addEventListener( 'resize', onWindowResize );
+				controls.update();
+				renderer.setAnimationLoop( render );
+
+			}
+
+			function setupBuffers() {
+
+				const particleStruct = struct( {
+					position: { type: 'vec3' },
+					velocity: { type: 'vec3' },
+					C: { type: 'mat3' },
+				} );
+				const particleStructSize = 20; // each vec3 occupies 4 floats and mat3 occupies 12 floats in memory because of webgpu memory alignment
+				const particleArray = new Float32Array( maxParticles * particleStructSize );
+
+				for ( let i = 0; i < maxParticles; i ++ ) {
+
+					particleArray[ i * particleStructSize ] = ( Math.random() * 0.8 + 0.1 );
+					particleArray[ i * particleStructSize + 1 ] = ( Math.random() * 0.8 + 0.1 );
+					particleArray[ i * particleStructSize + 2 ] = ( Math.random() * 0.8 + 0.1 );
+
+				}
+
+				particleBuffer = instancedArray( particleArray, particleStruct );
+
+				const cellCount = gridSize.x * gridSize.y * gridSize.z;
+
+				const cellStruct = struct( {
+					x: { type: 'int', atomic: true },
+					y: { type: 'int', atomic: true },
+					z: { type: 'int', atomic: true },
+					mass: { type: 'int', atomic: true },
+				} );
+
+				cellBuffer = instancedArray( cellCount, cellStruct );
+				cellBufferFloat = instancedArray( cellCount, 'vec4' );
+
+			}
+
+			function setupUniforms() {
+
+				gridSizeUniform = uniform( gridSize );
+				particleCountUniform = uniform( params.particleCount, 'uint' );
+				stiffnessUniform = uniform( 50 );
+				restDensityUniform = uniform( 1.5 );
+				dynamicViscosityUniform = uniform( 0.1 );
+				dtUniform = uniform( 1 / 60 );
+				gravityUniform = uniform( new THREE.Vector3( 0, - ( 9.81 * 9.81 ), 0 ) );
+				mouseRayOriginUniform = uniform( new THREE.Vector3( 0, 0, 0 ) );
+				mouseRayDirectionUniform = uniform( new THREE.Vector3( 0, 0, 0 ) );
+				mouseForceUniform = uniform( new THREE.Vector3( 0, 0, 0 ) );
+
+				// gui.add(restDensityUniform, "value", 1.0, 3, 0.1).name("restDensity");
+				// it's interesting to adjust the restDensity but it might cause the simulation to become unstable
+
+			}
+
+			function setupComputeShaders() {
+
+				// the MLS-MPM system uses five compute shaders:
+				// 1. clearGridKernel: this clears the grid before each pass
+				// 2. p2g1Kernel & 3. p2g2Kernel: These particle2grid kernels transfer the particles' energy to the grid
+				// 4. updateGridKernel: updates the grid
+				// 5. g2pKernel: grid2particle kernel, transfers the grid energy back to the particles
+				// the implementation closely follows https://github.com/matsuoka-601/WebGPU-Ocean
+
+				// because webgpu only supports int atomics, we use fixed point floats by multiplying/dividing the float values with a high integer constant
+				const encodeFixedPoint = ( f32 ) => {
+
+					return int( f32.mul( fixedPointMultiplier ) );
+			
+				};
+
+				const decodeFixedPoint = ( i32 ) => {
+
+					return float( i32 ).div( fixedPointMultiplier );
+			
+				};
+
+				const cellCount = gridSize.x * gridSize.y * gridSize.z;
+				clearGridKernel = Fn( () => {
+
+					If( instanceIndex.greaterThanEqual( uint( cellCount ) ), () => {
+
+						Return();
+			
+					} );
+
+					atomicStore( cellBuffer.element( instanceIndex ).get( 'x' ), 0 );
+					atomicStore( cellBuffer.element( instanceIndex ).get( 'y' ), 0 );
+					atomicStore( cellBuffer.element( instanceIndex ).get( 'z' ), 0 );
+					atomicStore( cellBuffer.element( instanceIndex ).get( 'mass' ), 0 );
+			
+				} )().compute( cellCount );
+
+				p2g1Kernel = Fn( () => {
+
+					If( instanceIndex.greaterThanEqual( particleCountUniform ), () => {
+
+						Return();
+			
+					} );
+					const particlePosition = particleBuffer.element( instanceIndex ).get( 'position' ).toConst( 'particlePosition' );
+					const particleVelocity = particleBuffer.element( instanceIndex ).get( 'velocity' ).toConst( 'particleVelocity' );
+					const C = particleBuffer.element( instanceIndex ).get( 'C' ).toConst( 'C' );
+
+					const gridPosition = particlePosition.mul( gridSizeUniform ).toVar();
+					const cellIndex = ivec3( gridPosition ).sub( 1 ).toConst( 'cellIndex' );
+					const cellDiff = gridPosition.fract().sub( 0.5 ).toConst( 'cellDiff' );
+					const w0 = float( 0.5 ).mul( float( 0.5 ).sub( cellDiff ) ).mul( float( 0.5 ).sub( cellDiff ) );
+					const w1 = float( 0.75 ).sub( cellDiff.mul( cellDiff ) );
+					const w2 = float( 0.5 ).mul( float( 0.5 ).add( cellDiff ) ).mul( float( 0.5 ).add( cellDiff ) );
+					const weights = array( [ w0, w1, w2 ] ).toConst( 'weights' );
+
+					Loop( { start: 0, end: 3, type: 'int', name: 'gx', condition: '<' }, ( { gx } ) => {
+
+						Loop( { start: 0, end: 3, type: 'int', name: 'gy', condition: '<' }, ( { gy } ) => {
+
+							Loop( { start: 0, end: 3, type: 'int', name: 'gz', condition: '<' }, ( { gz } ) => {
+
+								const weight = weights.element( gx ).x.mul( weights.element( gy ).y ).mul( weights.element( gz ).z );
+								const cellX = cellIndex.add( ivec3( gx, gy, gz ) ).toConst();
+								const cellDist = vec3( cellX ).add( 0.5 ).sub( gridPosition ).toConst( 'cellDist' );
+								const Q = C.mul( cellDist );
+
+								const massContrib = weight; // assuming particle mass = 1.0
+								const velContrib = massContrib.mul( particleVelocity.add( Q ) ).toConst( 'velContrib' );
+								const cellPtr = cellX.x.mul( int( gridSize.y * gridSize.z ) ).add( cellX.y.mul( int( gridSize.z ) ) ).add( cellX.z ).toConst();
+								const cell = cellBuffer.element( cellPtr );
+
+								atomicAdd( cell.get( 'x' ), encodeFixedPoint( velContrib.x ) );
+								atomicAdd( cell.get( 'y' ), encodeFixedPoint( velContrib.y ) );
+								atomicAdd( cell.get( 'z' ), encodeFixedPoint( velContrib.z ) );
+								atomicAdd( cell.get( 'mass' ), encodeFixedPoint( massContrib ) );
+			
+							} );
+			
+						} );
+			
+					} );
+			
+				} )().compute( params.particleCount );
+
+				p2g2Kernel = Fn( () => {
+
+					If( instanceIndex.greaterThanEqual( particleCountUniform ), () => {
+
+						Return();
+			
+					} );
+					const particlePosition = particleBuffer.element( instanceIndex ).get( 'position' ).toConst( 'particlePosition' );
+					const gridPosition = particlePosition.mul( gridSizeUniform ).toVar();
+
+					const cellIndex = ivec3( gridPosition ).sub( 1 ).toConst( 'cellIndex' );
+					const cellDiff = gridPosition.fract().sub( 0.5 ).toConst( 'cellDiff' );
+					const w0 = float( 0.5 ).mul( float( 0.5 ).sub( cellDiff ) ).mul( float( 0.5 ).sub( cellDiff ) );
+					const w1 = float( 0.75 ).sub( cellDiff.mul( cellDiff ) );
+					const w2 = float( 0.5 ).mul( float( 0.5 ).add( cellDiff ) ).mul( float( 0.5 ).add( cellDiff ) );
+					const weights = array( [ w0, w1, w2 ] ).toConst( 'weights' );
+
+					const density = float( 0 ).toVar( 'density' );
+					Loop( { start: 0, end: 3, type: 'int', name: 'gx', condition: '<' }, ( { gx } ) => {
+
+						Loop( { start: 0, end: 3, type: 'int', name: 'gy', condition: '<' }, ( { gy } ) => {
+
+							Loop( { start: 0, end: 3, type: 'int', name: 'gz', condition: '<' }, ( { gz } ) => {
+
+								const weight = weights.element( gx ).x.mul( weights.element( gy ).y ).mul( weights.element( gz ).z );
+								const cellX = cellIndex.add( ivec3( gx, gy, gz ) ).toConst();
+								const cellPtr = cellX.x.mul( int( gridSize.y * gridSize.z ) ).add( cellX.y.mul( int( gridSize.z ) ) ).add( cellX.z ).toConst();
+								const cell = cellBuffer.element( cellPtr );
+								const mass = decodeFixedPoint( atomicLoad( cell.get( 'mass' ) ) );
+								density.addAssign( mass.mul( weight ) );
+			
+							} );
+			
+						} );
+			
+					} );
+
+					const volume = float( 1 ).div( density );
+					const pressure = max( 0.0, pow( density.div( restDensityUniform ), 5.0 ).sub( 1 ).mul( stiffnessUniform ) ).toConst( 'pressure' );
+					const stress = mat3( pressure.negate(), 0, 0, 0, pressure.negate(), 0, 0, 0, pressure.negate() ).toVar( 'stress' );
+					const dudv = particleBuffer.element( instanceIndex ).get( 'C' ).toConst( 'C' );
+
+					const strain = dudv.add( dudv.transpose() );
+					stress.addAssign( strain.mul( dynamicViscosityUniform ) );
+					const eq16Term0 = volume.mul( - 4 ).mul( stress ).mul( dtUniform );
+
+					Loop( { start: 0, end: 3, type: 'int', name: 'gx', condition: '<' }, ( { gx } ) => {
+
+						Loop( { start: 0, end: 3, type: 'int', name: 'gy', condition: '<' }, ( { gy } ) => {
+
+							Loop( { start: 0, end: 3, type: 'int', name: 'gz', condition: '<' }, ( { gz } ) => {
+
+								const weight = weights.element( gx ).x.mul( weights.element( gy ).y ).mul( weights.element( gz ).z );
+								const cellX = cellIndex.add( ivec3( gx, gy, gz ) ).toConst();
+								const cellDist = vec3( cellX ).add( 0.5 ).sub( gridPosition ).toConst( 'cellDist' );
+								const momentum = eq16Term0.mul( weight ).mul( cellDist ).toConst( 'momentum' );
+
+								const cellPtr = cellX.x.mul( int( gridSize.y * gridSize.z ) ).add( cellX.y.mul( int( gridSize.z ) ) ).add( cellX.z ).toConst();
+								const cell = cellBuffer.element( cellPtr );
+								atomicAdd( cell.get( 'x' ), encodeFixedPoint( momentum.x ) );
+								atomicAdd( cell.get( 'y' ), encodeFixedPoint( momentum.y ) );
+								atomicAdd( cell.get( 'z' ), encodeFixedPoint( momentum.z ) );
+			
+							} );
+			
+						} );
+			
+					} );
+			
+				} )().compute( params.particleCount );
+
+				updateGridKernel = Fn( () => {
+
+					If( instanceIndex.greaterThanEqual( uint( cellCount ) ), () => {
+
+						Return();
+			
+					} );
+					const cell = cellBuffer.element( instanceIndex );
+					const mass = decodeFixedPoint( atomicLoad( cell.get( 'mass' ) ) ).toConst();
+					If( mass.lessThanEqual( 0 ), () => {
+
+						Return();
+
+					} );
+
+					const vx = decodeFixedPoint( atomicLoad( cell.get( 'x' ) ) ).div( mass ).toVar();
+					const vy = decodeFixedPoint( atomicLoad( cell.get( 'y' ) ) ).div( mass ).toVar();
+					const vz = decodeFixedPoint( atomicLoad( cell.get( 'z' ) ) ).div( mass ).toVar();
+
+					const x = int( instanceIndex ).div( int( gridSize.z * gridSize.y ) );
+					const y = int( instanceIndex ).div( int( gridSize.z ) ).mod( int( gridSize.y ) );
+					const z = int( instanceIndex ).mod( int( gridSize.z ) );
+					If( x.lessThan( int( 1 ) ).or( x.greaterThan( int( gridSize.x ).sub( int( 2 ) ) ) ), () => {
+
+						vx.assign( 0 );
+
+					} );
+					If( y.lessThan( int( 1 ) ).or( y.greaterThan( int( gridSize.y ).sub( int( 2 ) ) ) ), () => {
+
+						vy.assign( 0 );
+
+					} );
+					If( z.lessThan( int( 1 ) ).or( z.greaterThan( int( gridSize.z ).sub( int( 2 ) ) ) ), () => {
+
+						vz.assign( 0 );
+
+					} );
+
+					cellBufferFloat.element( instanceIndex ).assign( vec4( vx, vy, vz, mass ) );
+			
+				} )().compute( cellCount );
+
+
+				const clampToRoundedBox = ( pos, box, radius ) => {
+
+					const result = pos.sub( 0.5 ).toVar();
+					const pp = step( box, result.abs() ).mul( result.add( box.negate().mul( result.sign() ) ) );
+					const ppLen = pp.length().toVar();
+					const dist = ppLen.sub( radius );
+					If( dist.greaterThan( 0.0 ), () => {
+
+						result.subAssign( pp.normalize().mul( dist ).mul( 1.3 ) );
+			
+					} );
+					result.addAssign( 0.5 );
+					return result;
+			
+				};
+
+				g2pKernel = Fn( () => {
+
+					If( instanceIndex.greaterThanEqual( particleCountUniform ), () => {
+
+						Return();
+			
+					} );
+					const particlePosition = particleBuffer.element( instanceIndex ).get( 'position' ).toVar( 'particlePosition' );
+					const gridPosition = particlePosition.mul( gridSizeUniform ).toVar();
+					const particleVelocity = vec3( 0 ).toVar();
+
+					const cellIndex = ivec3( gridPosition ).sub( 1 ).toConst( 'cellIndex' );
+					const cellDiff = gridPosition.fract().sub( 0.5 ).toConst( 'cellDiff' );
+
+					const w0 = float( 0.5 ).mul( float( 0.5 ).sub( cellDiff ) ).mul( float( 0.5 ).sub( cellDiff ) );
+					const w1 = float( 0.75 ).sub( cellDiff.mul( cellDiff ) );
+					const w2 = float( 0.5 ).mul( float( 0.5 ).add( cellDiff ) ).mul( float( 0.5 ).add( cellDiff ) );
+					const weights = array( [ w0, w1, w2 ] ).toConst( 'weights' );
+
+					const B = mat3( 0 ).toVar( 'B' );
+					Loop( { start: 0, end: 3, type: 'int', name: 'gx', condition: '<' }, ( { gx } ) => {
+
+						Loop( { start: 0, end: 3, type: 'int', name: 'gy', condition: '<' }, ( { gy } ) => {
+
+							Loop( { start: 0, end: 3, type: 'int', name: 'gz', condition: '<' }, ( { gz } ) => {
+
+								const weight = weights.element( gx ).x.mul( weights.element( gy ).y ).mul( weights.element( gz ).z );
+								const cellX = cellIndex.add( ivec3( gx, gy, gz ) ).toConst();
+								const cellDist = vec3( cellX ).add( 0.5 ).sub( gridPosition ).toConst( 'cellDist' );
+								const cellPtr = cellX.x.mul( int( gridSize.y * gridSize.z ) ).add( cellX.y.mul( int( gridSize.z ) ) ).add( cellX.z ).toConst();
+
+								const weightedVelocity = cellBufferFloat.element( cellPtr ).xyz.mul( weight ).toConst( 'weightedVelocity' );
+								const term = mat3(
+									weightedVelocity.mul( cellDist.x ),
+									weightedVelocity.mul( cellDist.y ),
+									weightedVelocity.mul( cellDist.z )
+								);
+								B.addAssign( term );
+								particleVelocity.addAssign( weightedVelocity );
+			
+							} );
+			
+						} );
+			
+					} );
+
+					particleBuffer.element( instanceIndex ).get( 'C' ).assign( B.mul( 4 ) );
+
+					// gravity
+					particleVelocity.addAssign( gravityUniform.mul( dtUniform ) );
+
+					// scale from (gridSize.x, gridSize.y, gridSize.z) to (1, 1, 1)
+					particleVelocity.divAssign( gridSizeUniform );
+
+					// mouseInteraction
+					const dist = cross( mouseRayDirectionUniform, particlePosition.sub( mouseRayOriginUniform ) ).length();
+					const force = dist.mul( 3.00 ).oneMinus().max( 0.0 ).pow( 2 );
+					particleVelocity.addAssign( mouseForceUniform.mul( force ) );
+
+					// add velocity to position
+					particlePosition.addAssign( particleVelocity.mul( dtUniform ) );
+
+					// clamp position so outermost gridCells are not reached
+					particlePosition.assign( clamp( particlePosition, vec3( 1 ).div( gridSizeUniform ), vec3( gridSize ).sub( 1 ).div( gridSizeUniform ) ) );
+
+					// add force for particles to stay within rounded box
+					const innerBox = gridSizeUniform.mul( 0.5 ).sub( 9.0 ).div( gridSizeUniform ).toVar();
+					const innerRadius = float( 6.0 ).div( gridSizeUniform.x );
+					const posNext = particlePosition.add( particleVelocity.mul( dtUniform ).mul( 2.0 ) ).toConst( 'posNext' );
+					const posNextClamped = clampToRoundedBox( posNext, innerBox, innerRadius );
+					particleVelocity.addAssign( posNextClamped.sub( posNext ) );
+
+					/*
+					const wallStiffness = 1.0;
+					const xN = particlePosition.add( particleVelocity.mul( dtUniform ).mul( 2.0 ) ).toConst( 'xN' );
+					const wallMin = vec3( 3 ).div(gridSizeUniform).toConst( 'wallMin' );
+					const wallMax = vec3( gridSize ).sub( 3 ).div(gridSizeUniform).toConst( 'wallMax' );
+					particleVelocity.addAssign( wallMin.sub( xN ).max( 0.0 ).mul( wallStiffness ) );
+					particleVelocity.addAssign( wallMax.sub( xN ).min( 0.0 ).mul( wallStiffness ) );
+					*/
+
+					// scale from (1, 1, 1) back to (gridSize.x, gridSize.y, gridSize.z) to
+					particleVelocity.mulAssign( gridSizeUniform );
+
+					particleBuffer.element( instanceIndex ).get( 'position' ).assign( particlePosition );
+					particleBuffer.element( instanceIndex ).get( 'velocity' ).assign( particleVelocity );
+			
+				} )().compute( params.particleCount );
+
+			}
+
+			function setupMesh() {
+
+				// mergeVertices to reduce the number of vertexShaderCalls
+				const geometry = BufferGeometryUtils.mergeVertices( new THREE.IcosahedronGeometry( 0.008, 1 ).deleteAttribute( 'uv' ) );
+
+				const material = new THREE.MeshStandardNodeMaterial( {
+					color: '#0066FF'
+				} );
+
+				material.positionNode = Fn( () => {
+
+					const particlePosition = particleBuffer.element( instanceIndex ).get( 'position' );
+					return attribute( 'position' ).add( particlePosition );
+			
+				} )();
+				particleMesh = new THREE.Mesh( geometry, material );
+				particleMesh.count = params.particleCount;
+				particleMesh.position.set( - 0.5, 0, - 0.5 );
+				particleMesh.frustumCulled = false;
+				scene.add( particleMesh );
+
+			}
+
+			function setupMouse() {
+
+				const raycaster = new THREE.Raycaster();
+				const raycastPlane = new THREE.Plane( new THREE.Vector3( 0, 1, 0 ) );
+
+				const onMove = ( event ) => {
+
+					const pointer = new THREE.Vector2( ( event.clientX / window.innerWidth ) * 2 - 1, - ( event.clientY / window.innerHeight ) * 2 + 1 );
+					raycaster.setFromCamera( pointer, camera );
+					raycaster.ray.origin.x += 0.5;
+					raycaster.ray.origin.z += 0.5;
+					mouseRayOriginUniform.value.copy( raycaster.ray.origin );
+					mouseRayDirectionUniform.value.copy( raycaster.ray.direction );
+
+					raycaster.ray.intersectPlane( raycastPlane, mouseCoord );
+
+				};
+
+				renderer.domElement.addEventListener( 'pointermove', onMove );
+
+			}
+
+			function setupParticles() {
+
+				setupBuffers();
+				setupUniforms();
+				setupComputeShaders();
+				setupMesh();
+				setupMouse();
+
+			}
+
+			function onWindowResize() {
+
+				camera.aspect = window.innerWidth / window.innerHeight;
+
+				camera.updateProjectionMatrix();
+
+				renderer.setSize( window.innerWidth, window.innerHeight );
+
+			}
+
+			async function render() {
+
+				const deltaTime = THREE.MathUtils.clamp( clock.getDelta(), 0.00001, 1 / 60 ); // don't advance the time too far, for example when the window is out of focus
+				dtUniform.value = deltaTime;
+
+				mouseForceUniform.value.copy( mouseCoord ).sub( prevMouseCoord ).multiplyScalar( 2 );
+				const mouseForceLength = mouseForceUniform.value.length();
+				if ( mouseForceLength > 0.3 ) {
+
+					mouseForceUniform.value.multiplyScalar( 0.3 / mouseForceLength );
+			
+				}
+
+				prevMouseCoord.copy( mouseCoord );
+
+				await renderer.computeAsync( [ clearGridKernel, p2g1Kernel, p2g2Kernel, updateGridKernel, g2pKernel ] );
+
+				if ( params.ambientOcclusion ) {
+
+					await postProcessing.renderAsync();
+			
+				} else {
+
+					await renderer.renderAsync( scene, camera );
+			
+				}
+
+			}
+
+
+		</script>
+	</body>
+</html>

+ 1 - 0
test/e2e/puppeteer.js

@@ -176,6 +176,7 @@ const exceptionList = [
 	// WebGPU idleTime and parseTime too low
 	'webgpu_compute_cloth',
 	'webgpu_compute_particles',
+	'webgpu_compute_particles_fluid',
 	'webgpu_compute_particles_rain',
 	'webgpu_compute_particles_snow',
 	'webgpu_compute_points'

粤ICP备19079148号