| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310 |
- import { WebGLCoordinateSystem, WebGPUCoordinateSystem } from '../constants.js';
- import { Vector3 } from './Vector3.js';
- /**
- * Represents a 4x4 matrix.
- *
- * The most common use of a 4x4 matrix in 3D computer graphics is as a transformation matrix.
- * For an introduction to transformation matrices as used in WebGL, check out [this tutorial](https://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices)
- *
- * This allows a 3D vector representing a point in 3D space to undergo
- * transformations such as translation, rotation, shear, scale, reflection,
- * orthogonal or perspective projection and so on, by being multiplied by the
- * matrix. This is known as `applying` the matrix to the vector.
- *
- * A Note on Row-Major and Column-Major Ordering:
- *
- * The constructor and {@link Matrix3#set} method take arguments in
- * [row-major](https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order)
- * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order.
- * This means that calling:
- * ```js
- * const m = new THREE.Matrix4();
- * m.set( 11, 12, 13, 14,
- * 21, 22, 23, 24,
- * 31, 32, 33, 34,
- * 41, 42, 43, 44 );
- * ```
- * will result in the elements array containing:
- * ```js
- * m.elements = [ 11, 21, 31, 41,
- * 12, 22, 32, 42,
- * 13, 23, 33, 43,
- * 14, 24, 34, 44 ];
- * ```
- * and internally all calculations are performed using column-major ordering.
- * However, as the actual ordering makes no difference mathematically and
- * most people are used to thinking about matrices in row-major order, the
- * three.js documentation shows matrices in row-major order. Just bear in
- * mind that if you are reading the source code, you'll have to take the
- * transpose of any matrices outlined here to make sense of the calculations.
- */
- class Matrix4 {
- /**
- * Constructs a new 4x4 matrix. The arguments are supposed to be
- * in row-major order. If no arguments are provided, the constructor
- * initializes the matrix as an identity matrix.
- *
- * @param {number} [n11] - 1-1 matrix element.
- * @param {number} [n12] - 1-2 matrix element.
- * @param {number} [n13] - 1-3 matrix element.
- * @param {number} [n14] - 1-4 matrix element.
- * @param {number} [n21] - 2-1 matrix element.
- * @param {number} [n22] - 2-2 matrix element.
- * @param {number} [n23] - 2-3 matrix element.
- * @param {number} [n24] - 2-4 matrix element.
- * @param {number} [n31] - 3-1 matrix element.
- * @param {number} [n32] - 3-2 matrix element.
- * @param {number} [n33] - 3-3 matrix element.
- * @param {number} [n34] - 3-4 matrix element.
- * @param {number} [n41] - 4-1 matrix element.
- * @param {number} [n42] - 4-2 matrix element.
- * @param {number} [n43] - 4-3 matrix element.
- * @param {number} [n44] - 4-4 matrix element.
- */
- constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
- /**
- * This flag can be used for type testing.
- *
- * @type {boolean}
- * @readonly
- * @default true
- */
- Matrix4.prototype.isMatrix4 = true;
- /**
- * A column-major list of matrix values.
- *
- * @type {Array<number>}
- */
- this.elements = [
- 1, 0, 0, 0,
- 0, 1, 0, 0,
- 0, 0, 1, 0,
- 0, 0, 0, 1
- ];
- if ( n11 !== undefined ) {
- this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 );
- }
- }
- /**
- * Sets the elements of the matrix.The arguments are supposed to be
- * in row-major order.
- *
- * @param {number} [n11] - 1-1 matrix element.
- * @param {number} [n12] - 1-2 matrix element.
- * @param {number} [n13] - 1-3 matrix element.
- * @param {number} [n14] - 1-4 matrix element.
- * @param {number} [n21] - 2-1 matrix element.
- * @param {number} [n22] - 2-2 matrix element.
- * @param {number} [n23] - 2-3 matrix element.
- * @param {number} [n24] - 2-4 matrix element.
- * @param {number} [n31] - 3-1 matrix element.
- * @param {number} [n32] - 3-2 matrix element.
- * @param {number} [n33] - 3-3 matrix element.
- * @param {number} [n34] - 3-4 matrix element.
- * @param {number} [n41] - 4-1 matrix element.
- * @param {number} [n42] - 4-2 matrix element.
- * @param {number} [n43] - 4-3 matrix element.
- * @param {number} [n44] - 4-4 matrix element.
- * @return {Matrix4} A reference to this matrix.
- */
- set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
- const te = this.elements;
- te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
- te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
- te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
- te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
- return this;
- }
- /**
- * Sets this matrix to the 4x4 identity matrix.
- *
- * @return {Matrix4} A reference to this matrix.
- */
- identity() {
- this.set(
- 1, 0, 0, 0,
- 0, 1, 0, 0,
- 0, 0, 1, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Returns a matrix with copied values from this instance.
- *
- * @return {Matrix4} A clone of this instance.
- */
- clone() {
- return new Matrix4().fromArray( this.elements );
- }
- /**
- * Copies the values of the given matrix to this instance.
- *
- * @param {Matrix4} m - The matrix to copy.
- * @return {Matrix4} A reference to this matrix.
- */
- copy( m ) {
- const te = this.elements;
- const me = m.elements;
- te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
- te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
- te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
- te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
- return this;
- }
- /**
- * Copies the translation component of the given matrix
- * into this matrix's translation component.
- *
- * @param {Matrix4} m - The matrix to copy the translation component.
- * @return {Matrix4} A reference to this matrix.
- */
- copyPosition( m ) {
- const te = this.elements, me = m.elements;
- te[ 12 ] = me[ 12 ];
- te[ 13 ] = me[ 13 ];
- te[ 14 ] = me[ 14 ];
- return this;
- }
- /**
- * Set the upper 3x3 elements of this matrix to the values of given 3x3 matrix.
- *
- * @param {Matrix3} m - The 3x3 matrix.
- * @return {Matrix4} A reference to this matrix.
- */
- setFromMatrix3( m ) {
- const me = m.elements;
- this.set(
- me[ 0 ], me[ 3 ], me[ 6 ], 0,
- me[ 1 ], me[ 4 ], me[ 7 ], 0,
- me[ 2 ], me[ 5 ], me[ 8 ], 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Extracts the basis of this matrix into the three axis vectors provided.
- *
- * @param {Vector3} xAxis - The basis's x axis.
- * @param {Vector3} yAxis - The basis's y axis.
- * @param {Vector3} zAxis - The basis's z axis.
- * @return {Matrix4} A reference to this matrix.
- */
- extractBasis( xAxis, yAxis, zAxis ) {
- if ( this.determinant() === 0 ) {
- xAxis.set( 1, 0, 0 );
- yAxis.set( 0, 1, 0 );
- zAxis.set( 0, 0, 1 );
- return this;
- }
- xAxis.setFromMatrixColumn( this, 0 );
- yAxis.setFromMatrixColumn( this, 1 );
- zAxis.setFromMatrixColumn( this, 2 );
- return this;
- }
- /**
- * Sets the given basis vectors to this matrix.
- *
- * @param {Vector3} xAxis - The basis's x axis.
- * @param {Vector3} yAxis - The basis's y axis.
- * @param {Vector3} zAxis - The basis's z axis.
- * @return {Matrix4} A reference to this matrix.
- */
- makeBasis( xAxis, yAxis, zAxis ) {
- this.set(
- xAxis.x, yAxis.x, zAxis.x, 0,
- xAxis.y, yAxis.y, zAxis.y, 0,
- xAxis.z, yAxis.z, zAxis.z, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Extracts the rotation component of the given matrix
- * into this matrix's rotation component.
- *
- * Note: This method does not support reflection matrices.
- *
- * @param {Matrix4} m - The matrix.
- * @return {Matrix4} A reference to this matrix.
- */
- extractRotation( m ) {
- if ( m.determinant() === 0 ) {
- return this.identity();
- }
- const te = this.elements;
- const me = m.elements;
- const scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length();
- const scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length();
- const scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length();
- te[ 0 ] = me[ 0 ] * scaleX;
- te[ 1 ] = me[ 1 ] * scaleX;
- te[ 2 ] = me[ 2 ] * scaleX;
- te[ 3 ] = 0;
- te[ 4 ] = me[ 4 ] * scaleY;
- te[ 5 ] = me[ 5 ] * scaleY;
- te[ 6 ] = me[ 6 ] * scaleY;
- te[ 7 ] = 0;
- te[ 8 ] = me[ 8 ] * scaleZ;
- te[ 9 ] = me[ 9 ] * scaleZ;
- te[ 10 ] = me[ 10 ] * scaleZ;
- te[ 11 ] = 0;
- te[ 12 ] = 0;
- te[ 13 ] = 0;
- te[ 14 ] = 0;
- te[ 15 ] = 1;
- return this;
- }
- /**
- * Sets the rotation component (the upper left 3x3 matrix) of this matrix to
- * the rotation specified by the given Euler angles. The rest of
- * the matrix is set to the identity. Depending on the {@link Euler#order},
- * there are six possible outcomes. See [this page](https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix)
- * for a complete list.
- *
- * @param {Euler} euler - The Euler angles.
- * @return {Matrix4} A reference to this matrix.
- */
- makeRotationFromEuler( euler ) {
- const te = this.elements;
- const x = euler.x, y = euler.y, z = euler.z;
- const a = Math.cos( x ), b = Math.sin( x );
- const c = Math.cos( y ), d = Math.sin( y );
- const e = Math.cos( z ), f = Math.sin( z );
- if ( euler.order === 'XYZ' ) {
- const ae = a * e, af = a * f, be = b * e, bf = b * f;
- te[ 0 ] = c * e;
- te[ 4 ] = - c * f;
- te[ 8 ] = d;
- te[ 1 ] = af + be * d;
- te[ 5 ] = ae - bf * d;
- te[ 9 ] = - b * c;
- te[ 2 ] = bf - ae * d;
- te[ 6 ] = be + af * d;
- te[ 10 ] = a * c;
- } else if ( euler.order === 'YXZ' ) {
- const ce = c * e, cf = c * f, de = d * e, df = d * f;
- te[ 0 ] = ce + df * b;
- te[ 4 ] = de * b - cf;
- te[ 8 ] = a * d;
- te[ 1 ] = a * f;
- te[ 5 ] = a * e;
- te[ 9 ] = - b;
- te[ 2 ] = cf * b - de;
- te[ 6 ] = df + ce * b;
- te[ 10 ] = a * c;
- } else if ( euler.order === 'ZXY' ) {
- const ce = c * e, cf = c * f, de = d * e, df = d * f;
- te[ 0 ] = ce - df * b;
- te[ 4 ] = - a * f;
- te[ 8 ] = de + cf * b;
- te[ 1 ] = cf + de * b;
- te[ 5 ] = a * e;
- te[ 9 ] = df - ce * b;
- te[ 2 ] = - a * d;
- te[ 6 ] = b;
- te[ 10 ] = a * c;
- } else if ( euler.order === 'ZYX' ) {
- const ae = a * e, af = a * f, be = b * e, bf = b * f;
- te[ 0 ] = c * e;
- te[ 4 ] = be * d - af;
- te[ 8 ] = ae * d + bf;
- te[ 1 ] = c * f;
- te[ 5 ] = bf * d + ae;
- te[ 9 ] = af * d - be;
- te[ 2 ] = - d;
- te[ 6 ] = b * c;
- te[ 10 ] = a * c;
- } else if ( euler.order === 'YZX' ) {
- const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
- te[ 0 ] = c * e;
- te[ 4 ] = bd - ac * f;
- te[ 8 ] = bc * f + ad;
- te[ 1 ] = f;
- te[ 5 ] = a * e;
- te[ 9 ] = - b * e;
- te[ 2 ] = - d * e;
- te[ 6 ] = ad * f + bc;
- te[ 10 ] = ac - bd * f;
- } else if ( euler.order === 'XZY' ) {
- const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
- te[ 0 ] = c * e;
- te[ 4 ] = - f;
- te[ 8 ] = d * e;
- te[ 1 ] = ac * f + bd;
- te[ 5 ] = a * e;
- te[ 9 ] = ad * f - bc;
- te[ 2 ] = bc * f - ad;
- te[ 6 ] = b * e;
- te[ 10 ] = bd * f + ac;
- }
- // bottom row
- te[ 3 ] = 0;
- te[ 7 ] = 0;
- te[ 11 ] = 0;
- // last column
- te[ 12 ] = 0;
- te[ 13 ] = 0;
- te[ 14 ] = 0;
- te[ 15 ] = 1;
- return this;
- }
- /**
- * Sets the rotation component of this matrix to the rotation specified by
- * the given Quaternion as outlined [here](https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion)
- * The rest of the matrix is set to the identity.
- *
- * @param {Quaternion} q - The Quaternion.
- * @return {Matrix4} A reference to this matrix.
- */
- makeRotationFromQuaternion( q ) {
- return this.compose( _zero, q, _one );
- }
- /**
- * Sets the rotation component of the transformation matrix, looking from `eye` towards
- * `target`, and oriented by the up-direction.
- *
- * @param {Vector3} eye - The eye vector.
- * @param {Vector3} target - The target vector.
- * @param {Vector3} up - The up vector.
- * @return {Matrix4} A reference to this matrix.
- */
- lookAt( eye, target, up ) {
- const te = this.elements;
- _z.subVectors( eye, target );
- if ( _z.lengthSq() === 0 ) {
- // eye and target are in the same position
- _z.z = 1;
- }
- _z.normalize();
- _x.crossVectors( up, _z );
- if ( _x.lengthSq() === 0 ) {
- // up and z are parallel
- if ( Math.abs( up.z ) === 1 ) {
- _z.x += 0.0001;
- } else {
- _z.z += 0.0001;
- }
- _z.normalize();
- _x.crossVectors( up, _z );
- }
- _x.normalize();
- _y.crossVectors( _z, _x );
- te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
- te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
- te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;
- return this;
- }
- /**
- * Post-multiplies this matrix by the given 4x4 matrix.
- *
- * @param {Matrix4} m - The matrix to multiply with.
- * @return {Matrix4} A reference to this matrix.
- */
- multiply( m ) {
- return this.multiplyMatrices( this, m );
- }
- /**
- * Pre-multiplies this matrix by the given 4x4 matrix.
- *
- * @param {Matrix4} m - The matrix to multiply with.
- * @return {Matrix4} A reference to this matrix.
- */
- premultiply( m ) {
- return this.multiplyMatrices( m, this );
- }
- /**
- * Multiples the given 4x4 matrices and stores the result
- * in this matrix.
- *
- * @param {Matrix4} a - The first matrix.
- * @param {Matrix4} b - The second matrix.
- * @return {Matrix4} A reference to this matrix.
- */
- multiplyMatrices( a, b ) {
- const ae = a.elements;
- const be = b.elements;
- const te = this.elements;
- const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
- const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
- const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
- const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
- const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
- const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
- const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
- const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
- te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
- te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
- te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
- te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
- te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
- te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
- te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
- te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
- te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
- te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
- te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
- te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
- te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
- te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
- te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
- te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
- return this;
- }
- /**
- * Multiplies every component of the matrix by the given scalar.
- *
- * @param {number} s - The scalar.
- * @return {Matrix4} A reference to this matrix.
- */
- multiplyScalar( s ) {
- const te = this.elements;
- te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
- te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
- te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
- te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
- return this;
- }
- /**
- * Computes and returns the determinant of this matrix.
- *
- * Based on the method outlined [here](http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.html).
- *
- * @return {number} The determinant.
- */
- determinant() {
- const te = this.elements;
- const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
- const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
- const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
- const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
- const t11 = n23 * n34 - n24 * n33;
- const t12 = n22 * n34 - n24 * n32;
- const t13 = n22 * n33 - n23 * n32;
- const t21 = n21 * n34 - n24 * n31;
- const t22 = n21 * n33 - n23 * n31;
- const t23 = n21 * n32 - n22 * n31;
- return n11 * ( n42 * t11 - n43 * t12 + n44 * t13 ) -
- n12 * ( n41 * t11 - n43 * t21 + n44 * t22 ) +
- n13 * ( n41 * t12 - n42 * t21 + n44 * t23 ) -
- n14 * ( n41 * t13 - n42 * t22 + n43 * t23 );
- }
- /**
- * Transposes this matrix in place.
- *
- * @return {Matrix4} A reference to this matrix.
- */
- transpose() {
- const te = this.elements;
- let tmp;
- tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
- tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
- tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
- tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
- tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
- tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
- return this;
- }
- /**
- * Sets the position component for this matrix from the given vector,
- * without affecting the rest of the matrix.
- *
- * @param {number|Vector3} x - The x component of the vector or alternatively the vector object.
- * @param {number} y - The y component of the vector.
- * @param {number} z - The z component of the vector.
- * @return {Matrix4} A reference to this matrix.
- */
- setPosition( x, y, z ) {
- const te = this.elements;
- if ( x.isVector3 ) {
- te[ 12 ] = x.x;
- te[ 13 ] = x.y;
- te[ 14 ] = x.z;
- } else {
- te[ 12 ] = x;
- te[ 13 ] = y;
- te[ 14 ] = z;
- }
- return this;
- }
- /**
- * Inverts this matrix, using the [analytic method](https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution).
- * You can not invert with a determinant of zero. If you attempt this, the method produces
- * a zero matrix instead.
- *
- * @return {Matrix4} A reference to this matrix.
- */
- invert() {
- // based on https://github.com/toji/gl-matrix
- const te = this.elements,
- n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ],
- n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ],
- n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ],
- n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ],
- t1 = n11 * n22 - n21 * n12,
- t2 = n11 * n32 - n31 * n12,
- t3 = n11 * n42 - n41 * n12,
- t4 = n21 * n32 - n31 * n22,
- t5 = n21 * n42 - n41 * n22,
- t6 = n31 * n42 - n41 * n32,
- t7 = n13 * n24 - n23 * n14,
- t8 = n13 * n34 - n33 * n14,
- t9 = n13 * n44 - n43 * n14,
- t10 = n23 * n34 - n33 * n24,
- t11 = n23 * n44 - n43 * n24,
- t12 = n33 * n44 - n43 * n34;
- const det = t1 * t12 - t2 * t11 + t3 * t10 + t4 * t9 - t5 * t8 + t6 * t7;
- if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );
- const detInv = 1 / det;
- te[ 0 ] = ( n22 * t12 - n32 * t11 + n42 * t10 ) * detInv;
- te[ 1 ] = ( n31 * t11 - n21 * t12 - n41 * t10 ) * detInv;
- te[ 2 ] = ( n24 * t6 - n34 * t5 + n44 * t4 ) * detInv;
- te[ 3 ] = ( n33 * t5 - n23 * t6 - n43 * t4 ) * detInv;
- te[ 4 ] = ( n32 * t9 - n12 * t12 - n42 * t8 ) * detInv;
- te[ 5 ] = ( n11 * t12 - n31 * t9 + n41 * t8 ) * detInv;
- te[ 6 ] = ( n34 * t3 - n14 * t6 - n44 * t2 ) * detInv;
- te[ 7 ] = ( n13 * t6 - n33 * t3 + n43 * t2 ) * detInv;
- te[ 8 ] = ( n12 * t11 - n22 * t9 + n42 * t7 ) * detInv;
- te[ 9 ] = ( n21 * t9 - n11 * t11 - n41 * t7 ) * detInv;
- te[ 10 ] = ( n14 * t5 - n24 * t3 + n44 * t1 ) * detInv;
- te[ 11 ] = ( n23 * t3 - n13 * t5 - n43 * t1 ) * detInv;
- te[ 12 ] = ( n22 * t8 - n12 * t10 - n32 * t7 ) * detInv;
- te[ 13 ] = ( n11 * t10 - n21 * t8 + n31 * t7 ) * detInv;
- te[ 14 ] = ( n24 * t2 - n14 * t4 - n34 * t1 ) * detInv;
- te[ 15 ] = ( n13 * t4 - n23 * t2 + n33 * t1 ) * detInv;
- return this;
- }
- /**
- * Multiplies the columns of this matrix by the given vector.
- *
- * @param {Vector3} v - The scale vector.
- * @return {Matrix4} A reference to this matrix.
- */
- scale( v ) {
- const te = this.elements;
- const x = v.x, y = v.y, z = v.z;
- te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
- te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
- te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
- te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
- return this;
- }
- /**
- * Gets the maximum scale value of the three axes.
- *
- * @return {number} The maximum scale.
- */
- getMaxScaleOnAxis() {
- const te = this.elements;
- const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
- const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
- const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
- return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
- }
- /**
- * Sets this matrix as a translation transform from the given vector.
- *
- * @param {number|Vector3} x - The amount to translate in the X axis or alternatively a translation vector.
- * @param {number} y - The amount to translate in the Y axis.
- * @param {number} z - The amount to translate in the z axis.
- * @return {Matrix4} A reference to this matrix.
- */
- makeTranslation( x, y, z ) {
- if ( x.isVector3 ) {
- this.set(
- 1, 0, 0, x.x,
- 0, 1, 0, x.y,
- 0, 0, 1, x.z,
- 0, 0, 0, 1
- );
- } else {
- this.set(
- 1, 0, 0, x,
- 0, 1, 0, y,
- 0, 0, 1, z,
- 0, 0, 0, 1
- );
- }
- return this;
- }
- /**
- * Sets this matrix as a rotational transformation around the X axis by
- * the given angle.
- *
- * @param {number} theta - The rotation in radians.
- * @return {Matrix4} A reference to this matrix.
- */
- makeRotationX( theta ) {
- const c = Math.cos( theta ), s = Math.sin( theta );
- this.set(
- 1, 0, 0, 0,
- 0, c, - s, 0,
- 0, s, c, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Sets this matrix as a rotational transformation around the Y axis by
- * the given angle.
- *
- * @param {number} theta - The rotation in radians.
- * @return {Matrix4} A reference to this matrix.
- */
- makeRotationY( theta ) {
- const c = Math.cos( theta ), s = Math.sin( theta );
- this.set(
- c, 0, s, 0,
- 0, 1, 0, 0,
- - s, 0, c, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Sets this matrix as a rotational transformation around the Z axis by
- * the given angle.
- *
- * @param {number} theta - The rotation in radians.
- * @return {Matrix4} A reference to this matrix.
- */
- makeRotationZ( theta ) {
- const c = Math.cos( theta ), s = Math.sin( theta );
- this.set(
- c, - s, 0, 0,
- s, c, 0, 0,
- 0, 0, 1, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Sets this matrix as a rotational transformation around the given axis by
- * the given angle.
- *
- * This is a somewhat controversial but mathematically sound alternative to
- * rotating via Quaternions. See the discussion [here](https://www.gamedev.net/articles/programming/math-and-physics/do-we-really-need-quaternions-r1199).
- *
- * @param {Vector3} axis - The normalized rotation axis.
- * @param {number} angle - The rotation in radians.
- * @return {Matrix4} A reference to this matrix.
- */
- makeRotationAxis( axis, angle ) {
- // Based on http://www.gamedev.net/reference/articles/article1199.asp
- const c = Math.cos( angle );
- const s = Math.sin( angle );
- const t = 1 - c;
- const x = axis.x, y = axis.y, z = axis.z;
- const tx = t * x, ty = t * y;
- this.set(
- tx * x + c, tx * y - s * z, tx * z + s * y, 0,
- tx * y + s * z, ty * y + c, ty * z - s * x, 0,
- tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Sets this matrix as a scale transformation.
- *
- * @param {number} x - The amount to scale in the X axis.
- * @param {number} y - The amount to scale in the Y axis.
- * @param {number} z - The amount to scale in the Z axis.
- * @return {Matrix4} A reference to this matrix.
- */
- makeScale( x, y, z ) {
- this.set(
- x, 0, 0, 0,
- 0, y, 0, 0,
- 0, 0, z, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Sets this matrix as a shear transformation.
- *
- * @param {number} xy - The amount to shear X by Y.
- * @param {number} xz - The amount to shear X by Z.
- * @param {number} yx - The amount to shear Y by X.
- * @param {number} yz - The amount to shear Y by Z.
- * @param {number} zx - The amount to shear Z by X.
- * @param {number} zy - The amount to shear Z by Y.
- * @return {Matrix4} A reference to this matrix.
- */
- makeShear( xy, xz, yx, yz, zx, zy ) {
- this.set(
- 1, yx, zx, 0,
- xy, 1, zy, 0,
- xz, yz, 1, 0,
- 0, 0, 0, 1
- );
- return this;
- }
- /**
- * Sets this matrix to the transformation composed of the given position,
- * rotation (Quaternion) and scale.
- *
- * @param {Vector3} position - The position vector.
- * @param {Quaternion} quaternion - The rotation as a Quaternion.
- * @param {Vector3} scale - The scale vector.
- * @return {Matrix4} A reference to this matrix.
- */
- compose( position, quaternion, scale ) {
- const te = this.elements;
- const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
- const x2 = x + x, y2 = y + y, z2 = z + z;
- const xx = x * x2, xy = x * y2, xz = x * z2;
- const yy = y * y2, yz = y * z2, zz = z * z2;
- const wx = w * x2, wy = w * y2, wz = w * z2;
- const sx = scale.x, sy = scale.y, sz = scale.z;
- te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
- te[ 1 ] = ( xy + wz ) * sx;
- te[ 2 ] = ( xz - wy ) * sx;
- te[ 3 ] = 0;
- te[ 4 ] = ( xy - wz ) * sy;
- te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
- te[ 6 ] = ( yz + wx ) * sy;
- te[ 7 ] = 0;
- te[ 8 ] = ( xz + wy ) * sz;
- te[ 9 ] = ( yz - wx ) * sz;
- te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
- te[ 11 ] = 0;
- te[ 12 ] = position.x;
- te[ 13 ] = position.y;
- te[ 14 ] = position.z;
- te[ 15 ] = 1;
- return this;
- }
- /**
- * Decomposes this matrix into its position, rotation and scale components
- * and provides the result in the given objects.
- *
- * Note: Not all matrices are decomposable in this way. For example, if an
- * object has a non-uniformly scaled parent, then the object's world matrix
- * may not be decomposable, and this method may not be appropriate.
- *
- * @param {Vector3} position - The position vector.
- * @param {Quaternion} quaternion - The rotation as a Quaternion.
- * @param {Vector3} scale - The scale vector.
- * @return {Matrix4} A reference to this matrix.
- */
- decompose( position, quaternion, scale ) {
- const te = this.elements;
- position.x = te[ 12 ];
- position.y = te[ 13 ];
- position.z = te[ 14 ];
- const det = this.determinant();
- if ( det === 0 ) {
- scale.set( 1, 1, 1 );
- quaternion.identity();
- return this;
- }
- let sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
- const sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
- const sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
- // if determinant is negative, we need to invert one scale
- if ( det < 0 ) sx = - sx;
- // scale the rotation part
- _m1.copy( this );
- const invSX = 1 / sx;
- const invSY = 1 / sy;
- const invSZ = 1 / sz;
- _m1.elements[ 0 ] *= invSX;
- _m1.elements[ 1 ] *= invSX;
- _m1.elements[ 2 ] *= invSX;
- _m1.elements[ 4 ] *= invSY;
- _m1.elements[ 5 ] *= invSY;
- _m1.elements[ 6 ] *= invSY;
- _m1.elements[ 8 ] *= invSZ;
- _m1.elements[ 9 ] *= invSZ;
- _m1.elements[ 10 ] *= invSZ;
- quaternion.setFromRotationMatrix( _m1 );
- scale.x = sx;
- scale.y = sy;
- scale.z = sz;
- return this;
- }
- /**
- * Creates a perspective projection matrix. This is used internally by
- * {@link PerspectiveCamera#updateProjectionMatrix}.
- * @param {number} left - Left boundary of the viewing frustum at the near plane.
- * @param {number} right - Right boundary of the viewing frustum at the near plane.
- * @param {number} top - Top boundary of the viewing frustum at the near plane.
- * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane.
- * @param {number} near - The distance from the camera to the near plane.
- * @param {number} far - The distance from the camera to the far plane.
- * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system.
- * @param {boolean} [reversedDepth=false] - Whether to use a reversed depth.
- * @return {Matrix4} A reference to this matrix.
- */
- makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem, reversedDepth = false ) {
- const te = this.elements;
- const x = 2 * near / ( right - left );
- const y = 2 * near / ( top - bottom );
- const a = ( right + left ) / ( right - left );
- const b = ( top + bottom ) / ( top - bottom );
- let c, d;
- if ( reversedDepth ) {
- c = near / ( far - near );
- d = ( far * near ) / ( far - near );
- } else {
- if ( coordinateSystem === WebGLCoordinateSystem ) {
- c = - ( far + near ) / ( far - near );
- d = ( - 2 * far * near ) / ( far - near );
- } else if ( coordinateSystem === WebGPUCoordinateSystem ) {
- c = - far / ( far - near );
- d = ( - far * near ) / ( far - near );
- } else {
- throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem );
- }
- }
- te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
- te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
- te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
- te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
- return this;
- }
- /**
- * Creates a orthographic projection matrix. This is used internally by
- * {@link OrthographicCamera#updateProjectionMatrix}.
- * @param {number} left - Left boundary of the viewing frustum at the near plane.
- * @param {number} right - Right boundary of the viewing frustum at the near plane.
- * @param {number} top - Top boundary of the viewing frustum at the near plane.
- * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane.
- * @param {number} near - The distance from the camera to the near plane.
- * @param {number} far - The distance from the camera to the far plane.
- * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system.
- * @param {boolean} [reversedDepth=false] - Whether to use a reversed depth.
- * @return {Matrix4} A reference to this matrix.
- */
- makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem, reversedDepth = false ) {
- const te = this.elements;
- const x = 2 / ( right - left );
- const y = 2 / ( top - bottom );
- const a = - ( right + left ) / ( right - left );
- const b = - ( top + bottom ) / ( top - bottom );
- let c, d;
- if ( reversedDepth ) {
- c = 1 / ( far - near );
- d = far / ( far - near );
- } else {
- if ( coordinateSystem === WebGLCoordinateSystem ) {
- c = - 2 / ( far - near );
- d = - ( far + near ) / ( far - near );
- } else if ( coordinateSystem === WebGPUCoordinateSystem ) {
- c = - 1 / ( far - near );
- d = - near / ( far - near );
- } else {
- throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem );
- }
- }
- te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = a;
- te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = 0; te[ 13 ] = b;
- te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
- te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
- return this;
- }
- /**
- * Returns `true` if this matrix is equal with the given one.
- *
- * @param {Matrix4} matrix - The matrix to test for equality.
- * @return {boolean} Whether this matrix is equal with the given one.
- */
- equals( matrix ) {
- const te = this.elements;
- const me = matrix.elements;
- for ( let i = 0; i < 16; i ++ ) {
- if ( te[ i ] !== me[ i ] ) return false;
- }
- return true;
- }
- /**
- * Sets the elements of the matrix from the given array.
- *
- * @param {Array<number>} array - The matrix elements in column-major order.
- * @param {number} [offset=0] - Index of the first element in the array.
- * @return {Matrix4} A reference to this matrix.
- */
- fromArray( array, offset = 0 ) {
- for ( let i = 0; i < 16; i ++ ) {
- this.elements[ i ] = array[ i + offset ];
- }
- return this;
- }
- /**
- * Writes the elements of this matrix to the given array. If no array is provided,
- * the method returns a new instance.
- *
- * @param {Array<number>} [array=[]] - The target array holding the matrix elements in column-major order.
- * @param {number} [offset=0] - Index of the first element in the array.
- * @return {Array<number>} The matrix elements in column-major order.
- */
- toArray( array = [], offset = 0 ) {
- const te = this.elements;
- array[ offset ] = te[ 0 ];
- array[ offset + 1 ] = te[ 1 ];
- array[ offset + 2 ] = te[ 2 ];
- array[ offset + 3 ] = te[ 3 ];
- array[ offset + 4 ] = te[ 4 ];
- array[ offset + 5 ] = te[ 5 ];
- array[ offset + 6 ] = te[ 6 ];
- array[ offset + 7 ] = te[ 7 ];
- array[ offset + 8 ] = te[ 8 ];
- array[ offset + 9 ] = te[ 9 ];
- array[ offset + 10 ] = te[ 10 ];
- array[ offset + 11 ] = te[ 11 ];
- array[ offset + 12 ] = te[ 12 ];
- array[ offset + 13 ] = te[ 13 ];
- array[ offset + 14 ] = te[ 14 ];
- array[ offset + 15 ] = te[ 15 ];
- return array;
- }
- }
- const _v1 = /*@__PURE__*/ new Vector3();
- const _m1 = /*@__PURE__*/ new Matrix4();
- const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 );
- const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 );
- const _x = /*@__PURE__*/ new Vector3();
- const _y = /*@__PURE__*/ new Vector3();
- const _z = /*@__PURE__*/ new Vector3();
- export { Matrix4 };
|