| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- export default /* glsl */`
- #ifdef USE_TRANSMISSION
- // Transmission code is based on glTF-Sampler-Viewer
- // https://github.com/KhronosGroup/glTF-Sample-Viewer
- uniform float transmission;
- uniform float thickness;
- uniform float attenuationDistance;
- uniform vec3 attenuationColor;
- #ifdef USE_TRANSMISSIONMAP
- uniform sampler2D transmissionMap;
- #endif
- #ifdef USE_THICKNESSMAP
- uniform sampler2D thicknessMap;
- #endif
- uniform vec2 transmissionSamplerSize;
- uniform sampler2D transmissionSamplerMap;
- uniform mat4 modelMatrix;
- uniform mat4 projectionMatrix;
- varying vec3 vWorldPosition;
- // Mipped Bicubic Texture Filtering by N8
- // https://www.shadertoy.com/view/Dl2SDW
- float w0( float a ) {
- return ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );
- }
- float w1( float a ) {
- return ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );
- }
- float w2( float a ){
- return ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );
- }
- float w3( float a ) {
- return ( 1.0 / 6.0 ) * ( a * a * a );
- }
- // g0 and g1 are the two amplitude functions
- float g0( float a ) {
- return w0( a ) + w1( a );
- }
- float g1( float a ) {
- return w2( a ) + w3( a );
- }
- // h0 and h1 are the two offset functions
- float h0( float a ) {
- return - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );
- }
- float h1( float a ) {
- return 1.0 + w3( a ) / ( w2( a ) + w3( a ) );
- }
- vec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {
- uv = uv * texelSize.zw + 0.5;
- vec2 iuv = floor( uv );
- vec2 fuv = fract( uv );
- float g0x = g0( fuv.x );
- float g1x = g1( fuv.x );
- float h0x = h0( fuv.x );
- float h1x = h1( fuv.x );
- float h0y = h0( fuv.y );
- float h1y = h1( fuv.y );
- vec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
- vec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
- vec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
- vec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
- return g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +
- g1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );
- }
- vec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {
- vec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );
- vec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );
- vec2 fLodSizeInv = 1.0 / fLodSize;
- vec2 cLodSizeInv = 1.0 / cLodSize;
- vec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );
- vec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );
- return mix( fSample, cSample, fract( lod ) );
- }
- vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {
- // Direction of refracted light.
- vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );
- // Compute rotation-independent scaling of the model matrix.
- vec3 modelScale;
- modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );
- modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );
- modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );
- // The thickness is specified in local space.
- return normalize( refractionVector ) * thickness * modelScale;
- }
- float applyIorToRoughness( const in float roughness, const in float ior ) {
- // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and
- // an IOR of 1.5 results in the default amount of microfacet refraction.
- return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );
- }
- vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {
- float lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );
- return textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );
- }
- vec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {
- if ( isinf( attenuationDistance ) ) {
- // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all.
- return vec3( 1.0 );
- } else {
- // Compute light attenuation using Beer's law.
- vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;
- vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); // Beer's law
- return transmittance;
- }
- }
- vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,
- const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,
- const in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,
- const in vec3 attenuationColor, const in float attenuationDistance ) {
- vec4 transmittedLight;
- vec3 transmittance;
- #ifdef USE_DISPERSION
- float halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;
- vec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );
- for ( int i = 0; i < 3; i ++ ) {
- vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );
- vec3 refractedRayExit = position + transmissionRay;
- // Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
- vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
- vec2 refractionCoords = ndcPos.xy / ndcPos.w;
- refractionCoords += 1.0;
- refractionCoords /= 2.0;
- // Sample framebuffer to get pixel the refracted ray hits.
- vec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );
- transmittedLight[ i ] = transmissionSample[ i ];
- transmittedLight.a += transmissionSample.a;
- transmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];
- }
- transmittedLight.a /= 3.0;
- #else
- vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
- vec3 refractedRayExit = position + transmissionRay;
- // Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
- vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
- vec2 refractionCoords = ndcPos.xy / ndcPos.w;
- refractionCoords += 1.0;
- refractionCoords /= 2.0;
- // Sample framebuffer to get pixel the refracted ray hits.
- transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
- transmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );
- #endif
- vec3 attenuatedColor = transmittance * transmittedLight.rgb;
- // Get the specular component.
- vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );
- // As less light is transmitted, the opacity should be increased. This simple approximation does a decent job
- // of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color.
- float transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;
- return vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );
- }
- #endif
- `;
|