Matrix4.js 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. import { Vector3 } from './Vector3';
  2. /**
  3. * @author mrdoob / http://mrdoob.com/
  4. * @author supereggbert / http://www.paulbrunt.co.uk/
  5. * @author philogb / http://blog.thejit.org/
  6. * @author jordi_ros / http://plattsoft.com
  7. * @author D1plo1d / http://github.com/D1plo1d
  8. * @author alteredq / http://alteredqualia.com/
  9. * @author mikael emtinger / http://gomo.se/
  10. * @author timknip / http://www.floorplanner.com/
  11. * @author bhouston / http://clara.io
  12. * @author WestLangley / http://github.com/WestLangley
  13. */
  14. function Matrix4() {
  15. this.elements = [
  16. 1, 0, 0, 0,
  17. 0, 1, 0, 0,
  18. 0, 0, 1, 0,
  19. 0, 0, 0, 1
  20. ];
  21. if ( arguments.length > 0 ) {
  22. console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
  23. }
  24. }
  25. Object.assign( Matrix4.prototype, {
  26. isMatrix4: true,
  27. set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
  28. var te = this.elements;
  29. te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
  30. te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
  31. te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
  32. te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
  33. return this;
  34. },
  35. identity: function () {
  36. this.set(
  37. 1, 0, 0, 0,
  38. 0, 1, 0, 0,
  39. 0, 0, 1, 0,
  40. 0, 0, 0, 1
  41. );
  42. return this;
  43. },
  44. clone: function () {
  45. return new Matrix4().fromArray( this.elements );
  46. },
  47. copy: function ( m ) {
  48. var te = this.elements;
  49. var me = m.elements;
  50. te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
  51. te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
  52. te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
  53. te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
  54. return this;
  55. },
  56. copyPosition: function ( m ) {
  57. var te = this.elements, me = m.elements;
  58. te[ 12 ] = me[ 12 ];
  59. te[ 13 ] = me[ 13 ];
  60. te[ 14 ] = me[ 14 ];
  61. return this;
  62. },
  63. extractBasis: function ( xAxis, yAxis, zAxis ) {
  64. xAxis.setFromMatrixColumn( this, 0 );
  65. yAxis.setFromMatrixColumn( this, 1 );
  66. zAxis.setFromMatrixColumn( this, 2 );
  67. return this;
  68. },
  69. makeBasis: function ( xAxis, yAxis, zAxis ) {
  70. this.set(
  71. xAxis.x, yAxis.x, zAxis.x, 0,
  72. xAxis.y, yAxis.y, zAxis.y, 0,
  73. xAxis.z, yAxis.z, zAxis.z, 0,
  74. 0, 0, 0, 1
  75. );
  76. return this;
  77. },
  78. extractRotation: function () {
  79. var v1 = new Vector3();
  80. return function extractRotation( m ) {
  81. var te = this.elements;
  82. var me = m.elements;
  83. var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
  84. var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
  85. var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();
  86. te[ 0 ] = me[ 0 ] * scaleX;
  87. te[ 1 ] = me[ 1 ] * scaleX;
  88. te[ 2 ] = me[ 2 ] * scaleX;
  89. te[ 4 ] = me[ 4 ] * scaleY;
  90. te[ 5 ] = me[ 5 ] * scaleY;
  91. te[ 6 ] = me[ 6 ] * scaleY;
  92. te[ 8 ] = me[ 8 ] * scaleZ;
  93. te[ 9 ] = me[ 9 ] * scaleZ;
  94. te[ 10 ] = me[ 10 ] * scaleZ;
  95. return this;
  96. };
  97. }(),
  98. makeRotationFromEuler: function ( euler ) {
  99. if ( ! ( euler && euler.isEuler ) ) {
  100. console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
  101. }
  102. var te = this.elements;
  103. var x = euler.x, y = euler.y, z = euler.z;
  104. var a = Math.cos( x ), b = Math.sin( x );
  105. var c = Math.cos( y ), d = Math.sin( y );
  106. var e = Math.cos( z ), f = Math.sin( z );
  107. if ( euler.order === 'XYZ' ) {
  108. var ae = a * e, af = a * f, be = b * e, bf = b * f;
  109. te[ 0 ] = c * e;
  110. te[ 4 ] = - c * f;
  111. te[ 8 ] = d;
  112. te[ 1 ] = af + be * d;
  113. te[ 5 ] = ae - bf * d;
  114. te[ 9 ] = - b * c;
  115. te[ 2 ] = bf - ae * d;
  116. te[ 6 ] = be + af * d;
  117. te[ 10 ] = a * c;
  118. } else if ( euler.order === 'YXZ' ) {
  119. var ce = c * e, cf = c * f, de = d * e, df = d * f;
  120. te[ 0 ] = ce + df * b;
  121. te[ 4 ] = de * b - cf;
  122. te[ 8 ] = a * d;
  123. te[ 1 ] = a * f;
  124. te[ 5 ] = a * e;
  125. te[ 9 ] = - b;
  126. te[ 2 ] = cf * b - de;
  127. te[ 6 ] = df + ce * b;
  128. te[ 10 ] = a * c;
  129. } else if ( euler.order === 'ZXY' ) {
  130. var ce = c * e, cf = c * f, de = d * e, df = d * f;
  131. te[ 0 ] = ce - df * b;
  132. te[ 4 ] = - a * f;
  133. te[ 8 ] = de + cf * b;
  134. te[ 1 ] = cf + de * b;
  135. te[ 5 ] = a * e;
  136. te[ 9 ] = df - ce * b;
  137. te[ 2 ] = - a * d;
  138. te[ 6 ] = b;
  139. te[ 10 ] = a * c;
  140. } else if ( euler.order === 'ZYX' ) {
  141. var ae = a * e, af = a * f, be = b * e, bf = b * f;
  142. te[ 0 ] = c * e;
  143. te[ 4 ] = be * d - af;
  144. te[ 8 ] = ae * d + bf;
  145. te[ 1 ] = c * f;
  146. te[ 5 ] = bf * d + ae;
  147. te[ 9 ] = af * d - be;
  148. te[ 2 ] = - d;
  149. te[ 6 ] = b * c;
  150. te[ 10 ] = a * c;
  151. } else if ( euler.order === 'YZX' ) {
  152. var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
  153. te[ 0 ] = c * e;
  154. te[ 4 ] = bd - ac * f;
  155. te[ 8 ] = bc * f + ad;
  156. te[ 1 ] = f;
  157. te[ 5 ] = a * e;
  158. te[ 9 ] = - b * e;
  159. te[ 2 ] = - d * e;
  160. te[ 6 ] = ad * f + bc;
  161. te[ 10 ] = ac - bd * f;
  162. } else if ( euler.order === 'XZY' ) {
  163. var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
  164. te[ 0 ] = c * e;
  165. te[ 4 ] = - f;
  166. te[ 8 ] = d * e;
  167. te[ 1 ] = ac * f + bd;
  168. te[ 5 ] = a * e;
  169. te[ 9 ] = ad * f - bc;
  170. te[ 2 ] = bc * f - ad;
  171. te[ 6 ] = b * e;
  172. te[ 10 ] = bd * f + ac;
  173. }
  174. // last column
  175. te[ 3 ] = 0;
  176. te[ 7 ] = 0;
  177. te[ 11 ] = 0;
  178. // bottom row
  179. te[ 12 ] = 0;
  180. te[ 13 ] = 0;
  181. te[ 14 ] = 0;
  182. te[ 15 ] = 1;
  183. return this;
  184. },
  185. makeRotationFromQuaternion: function ( q ) {
  186. var te = this.elements;
  187. var x = q._x, y = q._y, z = q._z, w = q._w;
  188. var x2 = x + x, y2 = y + y, z2 = z + z;
  189. var xx = x * x2, xy = x * y2, xz = x * z2;
  190. var yy = y * y2, yz = y * z2, zz = z * z2;
  191. var wx = w * x2, wy = w * y2, wz = w * z2;
  192. te[ 0 ] = 1 - ( yy + zz );
  193. te[ 4 ] = xy - wz;
  194. te[ 8 ] = xz + wy;
  195. te[ 1 ] = xy + wz;
  196. te[ 5 ] = 1 - ( xx + zz );
  197. te[ 9 ] = yz - wx;
  198. te[ 2 ] = xz - wy;
  199. te[ 6 ] = yz + wx;
  200. te[ 10 ] = 1 - ( xx + yy );
  201. // last column
  202. te[ 3 ] = 0;
  203. te[ 7 ] = 0;
  204. te[ 11 ] = 0;
  205. // bottom row
  206. te[ 12 ] = 0;
  207. te[ 13 ] = 0;
  208. te[ 14 ] = 0;
  209. te[ 15 ] = 1;
  210. return this;
  211. },
  212. lookAt: function () {
  213. var x = new Vector3();
  214. var y = new Vector3();
  215. var z = new Vector3();
  216. return function lookAt( eye, target, up ) {
  217. var te = this.elements;
  218. z.subVectors( eye, target );
  219. if ( z.lengthSq() === 0 ) {
  220. // eye and target are in the same position
  221. z.z = 1;
  222. }
  223. z.normalize();
  224. x.crossVectors( up, z );
  225. if ( x.lengthSq() === 0 ) {
  226. // up and z are parallel
  227. if ( Math.abs( up.z ) === 1 ) {
  228. z.x += 0.0001;
  229. } else {
  230. z.z += 0.0001;
  231. }
  232. z.normalize();
  233. x.crossVectors( up, z );
  234. }
  235. x.normalize();
  236. y.crossVectors( z, x );
  237. te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
  238. te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
  239. te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
  240. return this;
  241. };
  242. }(),
  243. multiply: function ( m, n ) {
  244. if ( n !== undefined ) {
  245. console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
  246. return this.multiplyMatrices( m, n );
  247. }
  248. return this.multiplyMatrices( this, m );
  249. },
  250. premultiply: function ( m ) {
  251. return this.multiplyMatrices( m, this );
  252. },
  253. multiplyMatrices: function ( a, b ) {
  254. var ae = a.elements;
  255. var be = b.elements;
  256. var te = this.elements;
  257. var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
  258. var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
  259. var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
  260. var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
  261. var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
  262. var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
  263. var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
  264. var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
  265. te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
  266. te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
  267. te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
  268. te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
  269. te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
  270. te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
  271. te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
  272. te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
  273. te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
  274. te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
  275. te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
  276. te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
  277. te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
  278. te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
  279. te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
  280. te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
  281. return this;
  282. },
  283. multiplyScalar: function ( s ) {
  284. var te = this.elements;
  285. te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
  286. te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
  287. te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
  288. te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
  289. return this;
  290. },
  291. applyToBufferAttribute: function () {
  292. var v1 = new Vector3();
  293. return function applyToBufferAttribute( attribute ) {
  294. for ( var i = 0, l = attribute.count; i < l; i ++ ) {
  295. v1.x = attribute.getX( i );
  296. v1.y = attribute.getY( i );
  297. v1.z = attribute.getZ( i );
  298. v1.applyMatrix4( this );
  299. attribute.setXYZ( i, v1.x, v1.y, v1.z );
  300. }
  301. return attribute;
  302. };
  303. }(),
  304. determinant: function () {
  305. var te = this.elements;
  306. var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
  307. var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
  308. var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
  309. var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
  310. //TODO: make this more efficient
  311. //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
  312. return (
  313. n41 * (
  314. + n14 * n23 * n32
  315. - n13 * n24 * n32
  316. - n14 * n22 * n33
  317. + n12 * n24 * n33
  318. + n13 * n22 * n34
  319. - n12 * n23 * n34
  320. ) +
  321. n42 * (
  322. + n11 * n23 * n34
  323. - n11 * n24 * n33
  324. + n14 * n21 * n33
  325. - n13 * n21 * n34
  326. + n13 * n24 * n31
  327. - n14 * n23 * n31
  328. ) +
  329. n43 * (
  330. + n11 * n24 * n32
  331. - n11 * n22 * n34
  332. - n14 * n21 * n32
  333. + n12 * n21 * n34
  334. + n14 * n22 * n31
  335. - n12 * n24 * n31
  336. ) +
  337. n44 * (
  338. - n13 * n22 * n31
  339. - n11 * n23 * n32
  340. + n11 * n22 * n33
  341. + n13 * n21 * n32
  342. - n12 * n21 * n33
  343. + n12 * n23 * n31
  344. )
  345. );
  346. },
  347. transpose: function () {
  348. var te = this.elements;
  349. var tmp;
  350. tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
  351. tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
  352. tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
  353. tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
  354. tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
  355. tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
  356. return this;
  357. },
  358. setPosition: function ( v ) {
  359. var te = this.elements;
  360. te[ 12 ] = v.x;
  361. te[ 13 ] = v.y;
  362. te[ 14 ] = v.z;
  363. return this;
  364. },
  365. getInverse: function ( m, throwOnDegenerate ) {
  366. // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
  367. var te = this.elements,
  368. me = m.elements,
  369. n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
  370. n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
  371. n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
  372. n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],
  373. t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
  374. t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
  375. t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
  376. t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
  377. var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
  378. if ( det === 0 ) {
  379. var msg = "THREE.Matrix4: .getInverse() can't invert matrix, determinant is 0";
  380. if ( throwOnDegenerate === true ) {
  381. throw new Error( msg );
  382. } else {
  383. console.warn( msg );
  384. }
  385. return this.identity();
  386. }
  387. var detInv = 1 / det;
  388. te[ 0 ] = t11 * detInv;
  389. te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
  390. te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
  391. te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
  392. te[ 4 ] = t12 * detInv;
  393. te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
  394. te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
  395. te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
  396. te[ 8 ] = t13 * detInv;
  397. te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
  398. te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
  399. te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
  400. te[ 12 ] = t14 * detInv;
  401. te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
  402. te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
  403. te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
  404. return this;
  405. },
  406. scale: function ( v ) {
  407. var te = this.elements;
  408. var x = v.x, y = v.y, z = v.z;
  409. te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
  410. te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
  411. te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
  412. te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
  413. return this;
  414. },
  415. getMaxScaleOnAxis: function () {
  416. var te = this.elements;
  417. var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
  418. var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
  419. var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
  420. return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
  421. },
  422. makeTranslation: function ( x, y, z ) {
  423. this.set(
  424. 1, 0, 0, x,
  425. 0, 1, 0, y,
  426. 0, 0, 1, z,
  427. 0, 0, 0, 1
  428. );
  429. return this;
  430. },
  431. makeRotationX: function ( theta ) {
  432. var c = Math.cos( theta ), s = Math.sin( theta );
  433. this.set(
  434. 1, 0, 0, 0,
  435. 0, c, - s, 0,
  436. 0, s, c, 0,
  437. 0, 0, 0, 1
  438. );
  439. return this;
  440. },
  441. makeRotationY: function ( theta ) {
  442. var c = Math.cos( theta ), s = Math.sin( theta );
  443. this.set(
  444. c, 0, s, 0,
  445. 0, 1, 0, 0,
  446. - s, 0, c, 0,
  447. 0, 0, 0, 1
  448. );
  449. return this;
  450. },
  451. makeRotationZ: function ( theta ) {
  452. var c = Math.cos( theta ), s = Math.sin( theta );
  453. this.set(
  454. c, - s, 0, 0,
  455. s, c, 0, 0,
  456. 0, 0, 1, 0,
  457. 0, 0, 0, 1
  458. );
  459. return this;
  460. },
  461. makeRotationAxis: function ( axis, angle ) {
  462. // Based on http://www.gamedev.net/reference/articles/article1199.asp
  463. var c = Math.cos( angle );
  464. var s = Math.sin( angle );
  465. var t = 1 - c;
  466. var x = axis.x, y = axis.y, z = axis.z;
  467. var tx = t * x, ty = t * y;
  468. this.set(
  469. tx * x + c, tx * y - s * z, tx * z + s * y, 0,
  470. tx * y + s * z, ty * y + c, ty * z - s * x, 0,
  471. tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
  472. 0, 0, 0, 1
  473. );
  474. return this;
  475. },
  476. makeScale: function ( x, y, z ) {
  477. this.set(
  478. x, 0, 0, 0,
  479. 0, y, 0, 0,
  480. 0, 0, z, 0,
  481. 0, 0, 0, 1
  482. );
  483. return this;
  484. },
  485. makeShear: function ( x, y, z ) {
  486. this.set(
  487. 1, y, z, 0,
  488. x, 1, z, 0,
  489. x, y, 1, 0,
  490. 0, 0, 0, 1
  491. );
  492. return this;
  493. },
  494. compose: function ( position, quaternion, scale ) {
  495. this.makeRotationFromQuaternion( quaternion );
  496. this.scale( scale );
  497. this.setPosition( position );
  498. return this;
  499. },
  500. decompose: function () {
  501. var vector = new Vector3();
  502. var matrix = new Matrix4();
  503. return function decompose( position, quaternion, scale ) {
  504. var te = this.elements;
  505. var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
  506. var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
  507. var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
  508. // if determine is negative, we need to invert one scale
  509. var det = this.determinant();
  510. if ( det < 0 ) sx = - sx;
  511. position.x = te[ 12 ];
  512. position.y = te[ 13 ];
  513. position.z = te[ 14 ];
  514. // scale the rotation part
  515. matrix.copy( this );
  516. var invSX = 1 / sx;
  517. var invSY = 1 / sy;
  518. var invSZ = 1 / sz;
  519. matrix.elements[ 0 ] *= invSX;
  520. matrix.elements[ 1 ] *= invSX;
  521. matrix.elements[ 2 ] *= invSX;
  522. matrix.elements[ 4 ] *= invSY;
  523. matrix.elements[ 5 ] *= invSY;
  524. matrix.elements[ 6 ] *= invSY;
  525. matrix.elements[ 8 ] *= invSZ;
  526. matrix.elements[ 9 ] *= invSZ;
  527. matrix.elements[ 10 ] *= invSZ;
  528. quaternion.setFromRotationMatrix( matrix );
  529. scale.x = sx;
  530. scale.y = sy;
  531. scale.z = sz;
  532. return this;
  533. };
  534. }(),
  535. makePerspective: function ( left, right, top, bottom, near, far ) {
  536. if ( far === undefined ) {
  537. console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );
  538. }
  539. var te = this.elements;
  540. var x = 2 * near / ( right - left );
  541. var y = 2 * near / ( top - bottom );
  542. var a = ( right + left ) / ( right - left );
  543. var b = ( top + bottom ) / ( top - bottom );
  544. var c = - ( far + near ) / ( far - near );
  545. var d = - 2 * far * near / ( far - near );
  546. te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
  547. te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
  548. te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
  549. te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
  550. return this;
  551. },
  552. makeOrthographic: function ( left, right, top, bottom, near, far ) {
  553. var te = this.elements;
  554. var w = 1.0 / ( right - left );
  555. var h = 1.0 / ( top - bottom );
  556. var p = 1.0 / ( far - near );
  557. var x = ( right + left ) * w;
  558. var y = ( top + bottom ) * h;
  559. var z = ( far + near ) * p;
  560. te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
  561. te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
  562. te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
  563. te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
  564. return this;
  565. },
  566. equals: function ( matrix ) {
  567. var te = this.elements;
  568. var me = matrix.elements;
  569. for ( var i = 0; i < 16; i ++ ) {
  570. if ( te[ i ] !== me[ i ] ) return false;
  571. }
  572. return true;
  573. },
  574. fromArray: function ( array, offset ) {
  575. if ( offset === undefined ) offset = 0;
  576. for ( var i = 0; i < 16; i ++ ) {
  577. this.elements[ i ] = array[ i + offset ];
  578. }
  579. return this;
  580. },
  581. toArray: function ( array, offset ) {
  582. if ( array === undefined ) array = [];
  583. if ( offset === undefined ) offset = 0;
  584. var te = this.elements;
  585. array[ offset ] = te[ 0 ];
  586. array[ offset + 1 ] = te[ 1 ];
  587. array[ offset + 2 ] = te[ 2 ];
  588. array[ offset + 3 ] = te[ 3 ];
  589. array[ offset + 4 ] = te[ 4 ];
  590. array[ offset + 5 ] = te[ 5 ];
  591. array[ offset + 6 ] = te[ 6 ];
  592. array[ offset + 7 ] = te[ 7 ];
  593. array[ offset + 8 ] = te[ 8 ];
  594. array[ offset + 9 ] = te[ 9 ];
  595. array[ offset + 10 ] = te[ 10 ];
  596. array[ offset + 11 ] = te[ 11 ];
  597. array[ offset + 12 ] = te[ 12 ];
  598. array[ offset + 13 ] = te[ 13 ];
  599. array[ offset + 14 ] = te[ 14 ];
  600. array[ offset + 15 ] = te[ 15 ];
  601. return array;
  602. }
  603. } );
  604. export { Matrix4 };
粤ICP备19079148号