GeometryUtils.js 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. import { Vector3 } from 'three';
  2. /** @module GeometryUtils */
  3. /**
  4. * Generates 2D-Coordinates along a Hilbert curve.
  5. *
  6. * Based on work by: {@link http://www.openprocessing.org/sketch/15493}
  7. *
  8. * @param {Vector3} [center] - Center of Hilbert curve.
  9. * @param {number} [size=10] - Total width of Hilbert curve.
  10. * @param {number} [iterations=10] - Number of subdivisions.
  11. * @param {number} [v0=0] - Corner index -X, -Z.
  12. * @param {number} [v1=1] - Corner index -X, +Z.
  13. * @param {number} [v2=2] - Corner index +X, +Z.
  14. * @param {number} [v3=3] - Corner index +X, -Z.
  15. * @returns {Array<Vector3>} The Hilbert curve points.
  16. */
  17. function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {
  18. const half = size / 2;
  19. const vec_s = [
  20. new Vector3( center.x - half, center.y, center.z - half ),
  21. new Vector3( center.x - half, center.y, center.z + half ),
  22. new Vector3( center.x + half, center.y, center.z + half ),
  23. new Vector3( center.x + half, center.y, center.z - half )
  24. ];
  25. const vec = [
  26. vec_s[ v0 ],
  27. vec_s[ v1 ],
  28. vec_s[ v2 ],
  29. vec_s[ v3 ]
  30. ];
  31. // Recurse iterations
  32. if ( 0 <= -- iterations ) {
  33. return [
  34. ...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
  35. ...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
  36. ...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
  37. ...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
  38. ];
  39. }
  40. // Return complete Hilbert Curve.
  41. return vec;
  42. }
  43. /**
  44. * Generates 3D-Coordinates along a Hilbert curve.
  45. *
  46. * Based on work by: {@link https://openprocessing.org/user/5654}
  47. *
  48. * @param {Vector3} [center] - Center of Hilbert curve.
  49. * @param {number} [size=10] - Total width of Hilbert curve.
  50. * @param {number} [iterations=1] - Number of subdivisions.
  51. * @param {number} [v0=0] - Corner index -X, +Y, -Z.
  52. * @param {number} [v1=1] - Corner index -X, +Y, +Z.
  53. * @param {number} [v2=2] - Corner index -X, -Y, +Z.
  54. * @param {number} [v3=3] - Corner index -X, -Y, -Z.
  55. * @param {number} [v4=4] - Corner index +X, -Y, -Z.
  56. * @param {number} [v5=5] - Corner index +X, -Y, +Z.
  57. * @param {number} [v6=6] - Corner index +X, +Y, +Z.
  58. * @param {number} [v7=7] - Corner index +X, +Y, -Z.
  59. * @returns {Array<Vector3>} - The Hilbert curve points.
  60. */
  61. function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {
  62. // Default Vars
  63. const half = size / 2;
  64. const vec_s = [
  65. new Vector3( center.x - half, center.y + half, center.z - half ),
  66. new Vector3( center.x - half, center.y + half, center.z + half ),
  67. new Vector3( center.x - half, center.y - half, center.z + half ),
  68. new Vector3( center.x - half, center.y - half, center.z - half ),
  69. new Vector3( center.x + half, center.y - half, center.z - half ),
  70. new Vector3( center.x + half, center.y - half, center.z + half ),
  71. new Vector3( center.x + half, center.y + half, center.z + half ),
  72. new Vector3( center.x + half, center.y + half, center.z - half )
  73. ];
  74. const vec = [
  75. vec_s[ v0 ],
  76. vec_s[ v1 ],
  77. vec_s[ v2 ],
  78. vec_s[ v3 ],
  79. vec_s[ v4 ],
  80. vec_s[ v5 ],
  81. vec_s[ v6 ],
  82. vec_s[ v7 ]
  83. ];
  84. // Recurse iterations
  85. if ( -- iterations >= 0 ) {
  86. return [
  87. ...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
  88. ...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
  89. ...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
  90. ...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
  91. ...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
  92. ...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
  93. ...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
  94. ...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
  95. ];
  96. }
  97. // Return complete Hilbert Curve.
  98. return vec;
  99. }
  100. /**
  101. * Generates a Gosper curve (lying in the XY plane).
  102. *
  103. * Reference: {@link https://gist.github.com/nitaku/6521802}
  104. *
  105. * @param {number} [size=1] - The size of a single gosper island.
  106. * @return {Array<number>} The gosper island points.
  107. */
  108. function gosper( size = 1 ) {
  109. function fractalize( config ) {
  110. let output;
  111. let input = config.axiom;
  112. for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
  113. output = '';
  114. for ( let j = 0, jl = input.length; j < jl; j ++ ) {
  115. const char = input[ j ];
  116. if ( char in config.rules ) {
  117. output += config.rules[ char ];
  118. } else {
  119. output += char;
  120. }
  121. }
  122. input = output;
  123. }
  124. return output;
  125. }
  126. function toPoints( config ) {
  127. let currX = 0, currY = 0;
  128. let angle = 0;
  129. const path = [ 0, 0, 0 ];
  130. const fractal = config.fractal;
  131. for ( let i = 0, l = fractal.length; i < l; i ++ ) {
  132. const char = fractal[ i ];
  133. if ( char === '+' ) {
  134. angle += config.angle;
  135. } else if ( char === '-' ) {
  136. angle -= config.angle;
  137. } else if ( char === 'F' ) {
  138. currX += config.size * Math.cos( angle );
  139. currY += - config.size * Math.sin( angle );
  140. path.push( currX, currY, 0 );
  141. }
  142. }
  143. return path;
  144. }
  145. //
  146. const gosper = fractalize( {
  147. axiom: 'A',
  148. steps: 4,
  149. rules: {
  150. A: 'A+BF++BF-FA--FAFA-BF+',
  151. B: '-FA+BFBF++BF+FA--FA-B'
  152. }
  153. } );
  154. const points = toPoints( {
  155. fractal: gosper,
  156. size: size,
  157. angle: Math.PI / 3 // 60 degrees
  158. } );
  159. return points;
  160. }
  161. export {
  162. hilbert2D,
  163. hilbert3D,
  164. gosper,
  165. };
粤ICP备19079148号