LensflareMesh.js 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. import {
  2. AdditiveBlending,
  3. Box2,
  4. BufferGeometry,
  5. Color,
  6. FramebufferTexture,
  7. InterleavedBuffer,
  8. InterleavedBufferAttribute,
  9. Mesh,
  10. MeshBasicNodeMaterial,
  11. NodeMaterial,
  12. UnsignedByteType,
  13. Vector2,
  14. Vector3,
  15. Vector4 } from 'three';
  16. import { texture, textureLoad, uv, ivec2, vec2, vec4, positionGeometry, reference, varyingProperty, materialReference, Fn, Node } from 'three/tsl';
  17. class LensflareMesh extends Mesh {
  18. constructor() {
  19. super( LensflareMesh.Geometry, new MeshBasicNodeMaterial( { opacity: 0, transparent: true } ) );
  20. this.isLensflare = true;
  21. this.type = 'LensflareMesh';
  22. this.frustumCulled = false;
  23. this.renderOrder = Infinity;
  24. //
  25. const positionView = new Vector3();
  26. // textures
  27. const tempMap = new FramebufferTexture( 16, 16 );
  28. const occlusionMap = new FramebufferTexture( 16, 16 );
  29. let currentType = UnsignedByteType;
  30. const geometry = LensflareMesh.Geometry;
  31. // values for shared material uniforms
  32. const sharedValues = {
  33. scale: new Vector2(),
  34. positionScreen: new Vector3()
  35. };
  36. // materials
  37. const scale = reference( 'scale', 'vec2', sharedValues );
  38. const screenPosition = reference( 'positionScreen', 'vec3', sharedValues );
  39. const vertexNode = vec4( positionGeometry.xy.mul( scale ).add( screenPosition.xy ), screenPosition.z, 1.0 );
  40. const material1a = new NodeMaterial();
  41. material1a.depthTest = true;
  42. material1a.depthWrite = false;
  43. material1a.transparent = false;
  44. material1a.fog = false;
  45. material1a.type = 'Lensflare-1a';
  46. material1a.vertexNode = vertexNode;
  47. material1a.fragmentNode = vec4( 1.0, 0.0, 1.0, 1.0 );
  48. const material1b = new NodeMaterial();
  49. material1b.depthTest = false;
  50. material1b.depthWrite = false;
  51. material1b.transparent = false;
  52. material1b.fog = false;
  53. material1b.type = 'Lensflare-1b';
  54. material1b.vertexNode = vertexNode;
  55. material1b.fragmentNode = texture( tempMap, vec2( uv().flipY() ) );
  56. // the following object is used for occlusionMap generation
  57. const mesh1 = new Mesh( geometry, material1a );
  58. //
  59. const elements = [];
  60. const elementMeshes = [];
  61. const material2 = new NodeMaterial();
  62. material2.transparent = true;
  63. material2.blending = AdditiveBlending;
  64. material2.depthWrite = false;
  65. material2.depthTest = false;
  66. material2.fog = false;
  67. material2.type = 'Lensflare-2';
  68. material2.screenPosition = new Vector3();
  69. material2.scale = new Vector2();
  70. material2.occlusionMap = occlusionMap;
  71. material2.vertexNode = Fn( ( { material } ) => {
  72. const scale = materialReference( 'scale', 'vec2' );
  73. const screenPosition = materialReference( 'screenPosition', 'vec3' );
  74. const occlusionMap = material.occlusionMap;
  75. const pos = positionGeometry.xy.toVar();
  76. const visibility = textureLoad( occlusionMap, ivec2( 2, 2 ) ).toVar();
  77. visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 2 ) ) );
  78. visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 2 ) ) );
  79. visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 8 ) ) );
  80. visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 14 ) ) );
  81. visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 14 ) ) );
  82. visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 14 ) ) );
  83. visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 8 ) ) );
  84. visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 8 ) ) );
  85. const vVisibility = varyingProperty( 'float', 'vVisibility' );
  86. vVisibility.assign( visibility.r.div( 9.0 ) );
  87. vVisibility.mulAssign( visibility.g.div( 9.0 ).oneMinus() );
  88. vVisibility.mulAssign( visibility.b.div( 9.0 ) );
  89. return vec4( ( pos.mul( scale ).add( screenPosition.xy ).xy ), screenPosition.z, 1.0 );
  90. } )();
  91. material2.fragmentNode = Fn( () => {
  92. const color = reference( 'color', 'color' );
  93. const map = reference( 'map', 'texture' );
  94. const vVisibility = varyingProperty( 'float', 'vVisibility' );
  95. const output = map.toVar();
  96. output.a.mulAssign( vVisibility );
  97. output.rgb.mulAssign( color );
  98. return output;
  99. } )();
  100. this.addElement = function ( element ) {
  101. elements.push( element );
  102. };
  103. //
  104. const positionScreen = sharedValues.positionScreen;
  105. const screenPositionPixels = new Vector4( 0, 0, 16, 16 );
  106. const validArea = new Box2();
  107. const viewport = new Vector4();
  108. // dummy node for renderer.renderObject()
  109. const lightsNode = new Node();
  110. this.onBeforeRender = ( renderer, scene, camera ) => {
  111. renderer.getViewport( viewport );
  112. viewport.multiplyScalar( window.devicePixelRatio );
  113. const renderTarget = renderer.getRenderTarget();
  114. const type = ( renderTarget !== null ) ? renderTarget.texture.type : UnsignedByteType;
  115. if ( currentType !== type ) {
  116. tempMap.dispose();
  117. occlusionMap.dispose();
  118. tempMap.type = occlusionMap.type = type;
  119. currentType = type;
  120. }
  121. const invAspect = viewport.w / viewport.z;
  122. const halfViewportWidth = viewport.z / 2.0;
  123. const halfViewportHeight = viewport.w / 2.0;
  124. const size = 16 / viewport.w;
  125. sharedValues.scale.set( size * invAspect, size );
  126. validArea.min.set( viewport.x, viewport.y );
  127. validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );
  128. // calculate position in screen space
  129. positionView.setFromMatrixPosition( this.matrixWorld );
  130. positionView.applyMatrix4( camera.matrixWorldInverse );
  131. if ( positionView.z > 0 ) return; // lensflare is behind the camera
  132. positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix );
  133. // horizontal and vertical coordinate of the lower left corner of the pixels to copy
  134. screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8;
  135. screenPositionPixels.y = viewport.y - ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8;
  136. // screen cull
  137. if ( validArea.containsPoint( screenPositionPixels ) ) {
  138. // save current RGB to temp texture
  139. renderer.copyFramebufferToTexture( tempMap, screenPositionPixels );
  140. // render pink quad
  141. renderer.renderObject( mesh1, scene, camera, geometry, material1a, null, lightsNode );
  142. // copy result to occlusionMap
  143. renderer.copyFramebufferToTexture( occlusionMap, screenPositionPixels );
  144. // restore graphics
  145. renderer.renderObject( mesh1, scene, camera, geometry, material1b, null, lightsNode );
  146. // render elements
  147. const vecX = - positionScreen.x * 2;
  148. const vecY = - positionScreen.y * 2;
  149. for ( let i = 0, l = elements.length; i < l; i ++ ) {
  150. const element = elements[ i ];
  151. let mesh2 = elementMeshes[ i ];
  152. if ( mesh2 === undefined ) {
  153. mesh2 = elementMeshes[ i ] = new Mesh( geometry, material2 );
  154. mesh2.color = element.color.convertSRGBToLinear();
  155. mesh2.map = element.texture;
  156. }
  157. material2.screenPosition.x = positionScreen.x + vecX * element.distance;
  158. material2.screenPosition.y = positionScreen.y - vecY * element.distance;
  159. material2.screenPosition.z = positionScreen.z;
  160. const size = element.size / viewport.w;
  161. material2.scale.set( size * invAspect, size );
  162. renderer.renderObject( mesh2, scene, camera, geometry, material2, null, lightsNode );
  163. }
  164. }
  165. };
  166. this.dispose = function () {
  167. material1a.dispose();
  168. material1b.dispose();
  169. material2.dispose();
  170. tempMap.dispose();
  171. occlusionMap.dispose();
  172. for ( let i = 0, l = elements.length; i < l; i ++ ) {
  173. elements[ i ].texture.dispose();
  174. }
  175. };
  176. }
  177. }
  178. //
  179. class LensflareElement {
  180. constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) {
  181. this.texture = texture;
  182. this.size = size;
  183. this.distance = distance;
  184. this.color = color;
  185. }
  186. }
  187. LensflareMesh.Geometry = ( function () {
  188. const geometry = new BufferGeometry();
  189. const float32Array = new Float32Array( [
  190. - 1, - 1, 0, 0, 0,
  191. 1, - 1, 0, 1, 0,
  192. 1, 1, 0, 1, 1,
  193. - 1, 1, 0, 0, 1
  194. ] );
  195. const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
  196. geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] );
  197. geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
  198. geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
  199. return geometry;
  200. } )();
  201. export { LensflareMesh, LensflareElement };
粤ICP备19079148号